Structure–Property of Wet-Spun Alginate-Based Precursor Fibers Modified with Nanocarbons


The results of studies assessing the influence of the addition of carbon nanofillers, such as multiwalled carbon nanotubes (MWCNTs) and graphene oxide (GO) that differ in size and structure, on the molecular and supramolecular structure and properties of alginate fibers that might be prospective precursors for carbon fiber (PCF) industry are presented in this article. The investigation was carried out by Fourier transform infrared (FTIR) spectroscopy, wide-angle X-ray diffraction (WAXD), and tension testing. In the frame of the current study, two types of alginate fibers were examined and compared: alginic acid and calcium alginate fibers. Alginic acid fibers were formed by chemical treatment of calcium alginate fibers with hydrochloric acid due to the fact that Ca2+ ions presented in the fibers were expected to adversely affect the prospective carbonization process. This investigation brought important conclusions about the influence of nanofillers on the physical properties of the final material. Understanding the link between the incorporation of carbon nanostructures and a possible influence on the formation of ordered carbon structures in the precursor fibers brings an important opportunity to get insights into the application of alginate fibers as a prospective base material for obtaining cost-efficient carbon fibers.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Cook, J. G. (1984). Handbook of textile fibres: man-made fibres, Merrow. McGraw Hill Professional (New York).

  • [2] Haug, A., Smidsrød, O. (1965). Fractionation of alginates by precipitation with calcium and magnesium ions. Acta Chemica Scandinavica, 19, 1221-1226.

  • [3] Martinsen, A., Skjåk-Bræk, G., Smidsrød, O., Zanetti, F., Paoletti, S. (1991). Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates. Carbohydrate Polymers, 15, 171-193.

  • [4] Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J. C., Thom, D. (1973). Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Letters, 32, 195-198.

  • [5] Li, D., Lu, D., Liu, L., Xia, Y., She, X., et al. (2015). Eggbox structure in cobalt alginate: a new approach to multifunctional hierarchical mesoporous N-doped carbon nanofibers for efficient catalysis and energy storage. ACS Central Science, 1, 261-269.

  • [6] Zhang, S., Xu, K., Darabi, M. A., Yuan, Q., Xing, M. (2016). Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection. Materials Science and Engineering Part C, 69, 496-504.

  • [7] Caetano, L. A., Almeida, A., Gonçalves, L. M. D. (2016). Effect of experimental parameters on alginate/chitosan microparticles for BCG encapsulation. Marine Drugs, 14(5), 90.

  • [8] Muzzarelli, R. A. A, El Mehtedi, M., Bottegoni, C., Aquili, A., Gigante, A. (2015). Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Marine Drugs, 13(12), 7314-7338.

  • [9] Straccia, M. C., Gomez d’Ayala, G., Romano, I., Oliva, A., Laurienzo, P. (2015). Alginate hydrogels coated with chitosan for wound dressing. Marine Drugs, 13(5), 2890-2908.

  • [10] Dhall, S., Silva, J. P., Liu, Y., Hrynyk, M., Garcia, M., et al. (2015). Release of insulin from PLGA-alginate dressing stimulates regenerative healing of burn wounds in rats. Clinical Science, 129(12), 1115-1129

  • [11] Shamshina, J. L., Gurau, G., Block, L. E., Hansen, L. K., Dingee, C., et al. (2014). Chitin-calcium alginate composite fibers for wound care dressings spun from ionic liquid solution. Journal of Materials Chemistry B, 2(25), 3924-3936.

  • [12] Pabjańczyk-Wlazlo, E., Szparaga, G., Król, P., Skrzetuska, E., Wojtasik, K., et al. (2014). Sodium alginate fibers containing nanosilver. Advances in Polymer Technology, 33(S1), 21450.

  • [13] Wanawananon, K., Moulton, S. E., Wallace, G. G., Liawruangrath, S. (2016). Fabrication of novel core-shell PLGA and alginate fiber for dual-drug delivery system. Polymers for Advanced Technologies – in press

  • [14] Wu, H. -L., Hou, X. -X., Branford-White, C., Sun, X. -Z., Tao, L., et al. (2015). Drug-loaded microparticles prepared by the one-step deposition of calcium carbonate/alginate onto cotton fabrics. Journal of Applied Polymer Science, 132(40), 42618.

  • [15] Sun, J., Tan, H. (2013), Alginate-based biomaterials for regenerative medicine applications. Materials, 6(4), 1285-1309.

  • [16] Ni, S., Fan, X., Wang, J., Qi, H., Li, X. (2014). Biodegradable implants efficiently deliver combination of paclitaxel and temozolomide to glioma C6 cancer cells in vitro. Annals of Biomedical Engineering, 42(1), 214-221.

  • [17] Acarregui, A., Orive, G., Pedraz, J. L., Hernández, R. M. (2013). Therapeutic applications of encapsulated cells. Methods In Molecular Biology, 1051, 349-364.

  • [18] Lee, K. Y., Jeong, L., Kang, Y. O., Lee, S. J., Park, W. H. (2009). Electrospinning of polysaccharides for regenerative medicine. Advanced Drug Delivery Reviews, 61(12), 1020-1032.

  • [19] Bouhadir, K. H., Lee, K. Y., Alsberg, E., Damm, K. L., Anderson, K. W., et al. (2001). Degradation of partially oxidized alginate and its potential application for tissue engineering. Journal of Biotechnology Progress, 17, 945-950

  • [20] Mierisch, C. M., Cohen, S. B., Jordan, L. C., Robertson, P. G., Balian, G., et al. (2002). Transforming growth factor-ß in calcium alginate beads for the treatment of articular cartilage defects in the rabbit. The Journal of Arthroscopic and Related Surgery, 18, 892-900.

  • [21] Alsberg, E., Anderson, K. W., Albeiruti, A., Franceschi, R. T., Mooney, D. J. (2001). Cell-interactive alginate hydrogels for bone tissue engineering. Journal of Dental Research, 80, 2025-2029.

  • [22] Chung, T. W., Yang, J., Akaike, T., Cho, K. Y., Nah, J. W., et al. (2002). Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials, 23, 2827-2834.

  • [23] Jalali, F., Ardeshiri, M. (2016). Application of carbon nanotubes-ionic liquid hybrid in a sensitive atorvastatin ion-selective electrode. Materials Science and Engineering C, 69, 276-282.

  • [24] Zhang, D. -Y., Ge, C. -W., Wang, J. -Z., Zhang, T. -F., Wu, Y. -C., et al. (2016). Single-layer graphene-TiO2 nanotubes array heterojunction for ultraviolet photodetector application. Applied Surface Science, 387, 1162-1168.

  • [25] Bao, J., Hou, C., Dong, Q., Ma, X., Chen, J., et al. (2016). ELP-OPH/BSA/TiO2 nanofibers/c-MWCNTs based biosensor for sensitive and selective determination of p-nitrophenyl substituted organophosphate pesticides in aqueous system. Biosensors and Bioelectronics, 85, 935-942.

  • [26] Tian, W., Zhang, H., Duan, X., Sun, H., Tade, M. O., et al. (2016). Nitrogen- and sulfur-codoped hierarchically porous carbon for adsorptive and oxidative removal of pharmaceutical contaminants. ACS Applied Materials and Interfaces, 8(11), 7184-7193.

  • [27] Wu, J., Zhao, H., Chen, R., Pham-Huy, C., Hui, X., et al. (2016). Adsorptive removal of trace sulfonamide antibiotics by water-dispersible magnetic reduced graphene oxide-ferrite hybrids from wastewater. Journal of Chromatography B, 1029-1030, 106-112.

  • [28] Rabiej, M. (2003). Application of the genetic algorithms and multi-objective optimisation to the resolution of X-Ray diffraction curves of semicrystalline polymers. Fibres and Textiles in Eastern Europe, 11, 83-87.

  • [29] Rabiej, M. (2003). Application of multicriterial optimization of crystallinity degree of semicrystalline polymers. Polimery, 48, 288-295.

  • [30] Brzezińska, M., Szparaga, G. (2015). The effect of sodium alginate concentration on the rheological parameters of spinning solutions. Autex Research Journal, 15(2), 123-126

  • [31] Boguń, M. (2009). Rheological properties of sodium alginate spinning solutions with ceramic nanoadditives. Fibres and Textiles in Eastern Europe, 17(5), 17-22.

  • [32] Boguń, M., Rabiej, S. (2010). The influence of fiber formation conditions on the structure and properties of nanocomposite alginate fibers containing tricalcium phosphate or montmorillonite. Polymers and Composites, 31, 1321-1331.

  • [33] Arnott, S., Bian, W., Chandrasekaran, R., Manis, B. (2000). Lessons for today and tomorrow from yesterday - the structure of alginic acid. Fibre Diffraction Review, 36, 44-51.

  • [34] Fabia, J., Ślusarczyk, C., Gawłowski, A. (2005). Supermolecular structure of alginate fibres for medical application studied by means of WAXS and SAXS Methods. Fibres and Textiles in Eastern Europe, 53, 114-117.

  • [35] Gojny, F. H., Wichmann, M. H. G., Kopke, U., Fiedler, B., Schulte, K. (2004). Carbon nanotube reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composites Science and Technology, 64(15), 2363-71.


Journal + Issues