Studies of Structural Changes in PAN Fibers with Various Initial Structures under the Influence of Thermal Treatment in Media

Open access

Abstract

The aim of the paper is to assess the range and the mechanisms of transformations of the molecular structure and the physical microstructure of polyacrylonitrile (PAN) fibers produced by various manufacturers under the influence of thermal treatment in different conditions. The thermal treatments were carried out in different media (such as air, water, and steam), at various temperatures, and using different periods of treatment. Changes in the molecular structure were assessed using infrared (IR) absorption spectroscopy and evaluation of the differences in molecular cohesion energy of the fiber material during the dissolution processes. Changes in the fibers’ physical microstructure were investigated using densitometric, IR spectrophotometric, and X-ray diffraction methods; for assessment of both the reconstruction process of the paracrystalline matter of the fibers and the changes in the fibers’ total orientation, interferential polarization microscopy was used.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] English Patent 864096.

  • [2] German patent 975540.

  • [3] French patent 1267240.

  • [4] Bhemdrup J. Faserforsch u. (1961). Textiltechn 12 133 208.

  • [5] Izumi Z. Kiuchi K. Watanabe M. (1963). Copolymerization of acrylonitrile and p-sodium styrene sulfanate. Journal of Polymer Science Part A: General Papers A-1 2 705.

  • [6] Boguń M. Mikołajczyk T. (2006). Fibres & Textiles in Eastern Europe 3(57) 19-22.

  • [7] Mikołajczyk T. Boguń M. Kowalczyk A. (2005) Fibres & Textiles in Eastern Europe 3(51) 30-34.

  • [8] Brzezińska M. Król P. Boguń M. (2012) Engineering of Biomaterials 15 116-117 100-103.

  • [9] Mikołajczyk T. Szparaga G. (2009). Influence of fibre formation conditions on the properties of nanocomposite PAN fibres containing Nanosilver. Fibres and Textiles in Eastern Europe 75(4) 30-36.

  • [10] Mikołajczyk T. Szparaga G. Janowska G. (2009) Influence of silver nano-additive amount on the supramolecular structure porosity and properties of polyacrylonitrile precursor fibers. Polymers for Advanced Technologies 20(12) 1035-1043.

  • [11] Houtz R. C. (1950). “Orlon” acrylic fiber: chemistry and properties. Textile Research Journal 20 786.

  • [12] Grassie N. Hay N. J. Mc Neill J. (1958). Coloration in acrylonitrile and methacrylonitrile polymers. Journal of Polymer Science 31 205.

  • [13] Schurz J. J. (1958). Discoloration effects in acrylonitrile polymers. Journal of Polymer Science 28 438.

  • [14] Conley R. T. Bieron J. (1963). Examination of the oxidative degradation of polyacrylonitrile using infrared spectroscopy. Journal of Applied Polymer Science 7 1757.

  • [15] Fester W. (1965). Textil – Rundsch. 20 1.

  • [16] Koszeliew I. W. Sokołowskij W. H. (1993). Fibre Chemistry 5 8.

  • [17] Fimcer E. Fros W. (1992). Fibre Chemistry 2 14.

  • [18] Sawczenko G. Bondarenko W. M. Azarowa M. T. (1994). Fibre Chemistry 6 21.

  • [19] Azarowa M. T. Bondarenko W. M. Sawczenko G. (1995). Fibre Chemistry 1 10.

  • [20] Kakida H. Tashiro K. (1998). Mechanism and kinetics of stabilization reactions of polyacrylonitrile and related copolymers IV. Effects of atmosphere on isothermal DSC thermograms and FT-IR spectral changes during stabilization reaction of acrylonitrile/methacrylic acid copolymer. Polymer Journal 30 463-469.

  • [21] Kalasznik A. T. Zlatoustowa L. A. et al. (1999). Fibre Chemistry 31 425.

  • [22] Warszawskij W. J. (1994). Fibre Chemistry 1 18.

  • [23] Wołkowicz K. (1987). Przegląd włókienniczy 14.

  • [24] Szparaga G. Mikołajczyk T. Fraczek-Szczypta A. (2013). Fibres & Textiles in Eastern Europe 6(102) 33-38.

  • [25] Boguń M. (2008). Zeszyty naukowe Włókiennictwo Politechnika Łódzka 64 19-39.

  • [26] Glicińska E. Babeł K. (2013). Fibres & Textiles in Eastern Europe 3(99) 42-47.

  • [27] Szparaga G. (2012). Zeszyty naukowe Włókiennictwo Politechnika Łódzka 69 41-58.

  • [28] Marczak E. Marczak P. (2009). Przegląd Włókienniczy-Włókno Odzież Skóra 1 32-36.

  • [29] Marczak P. Marczak E. (2009). Przegląd Włókienniczy-Włókno Odzież Skóra 4 37-40.

  • [30vMarczak E Marczak P. (2003). Przegląd Włókienniczy+Technik Włókienniczy 3 3-5.

  • [31] Mikołajczyk T. (1997). Zeszyty naukowe PŁ nr 781 Rozprawy Naukowe Z 243.

  • [32] AKSA (Aksa Akrilik Kimya Sanayii A.i). AKSA The world leader in acrylic fiber. Chopped carbon fiber. Retrieved October 26 2011. Website: http://www.semplastik.com.tr/pdf/VIPAGEV/Chopped%20Carbon%20Fiber.pdf.

  • [33] Lipp-Symonowicz B. Sztajnowski S. Kułak A. (2012). Infrared radiation. IR spectroscopy as a possible method of analysing fibre structures and their changes under various impacts. Website: www.intechopen.comhttp://cdn.intechopen.com/pdfs-wm/27933.pdf.

  • [34] Bieniek A. Lipp-Symonowicz B. Sztajnowski S. (2009). Influence of the structures of polyamide 6 fibers on their ageing under intensive insolation conditions [in English]. Polimery 11-12 840.

  • [35] Bell R. J. (1972). Introductory Fourier transform infrared spectroscopy. New York Academic Press.

  • [36] Hirschfeld T. (1979). Fourier transform infrared spectroscopy. Ferraro – Basile eds. Applications to Chemical Systems. Vol. 2. New York Academic Press.

  • [37] Dechant J. (1972). Ultrarotspektroskopische Untersuchungen an Polymeren Berlin Akademie-Verlag.

  • [38] Witenhafer D. E. Koenig J. L. (1968). Infrared studies of poly[33-bis(chloromethyl)oxacyclobutane]. II. Polymorphic transformation. J Macromolecular Science Part B 2 247.

  • [39] Ueberreiter K. (1968). Diffusion in polymers. New York NY: Academic Press.

  • [40] Lindenmeyer P. H. Hosemann R. J. (1963). Permanent polarization in poly(acrylonitrile). Journal of Applied Physics 34 42.

  • [41] Urbańczyk G. W. (1970). Fizyka Włókna WNT Warszawa.

  • [42] Pluta M. (1982). Mikroskopia optyczna PWN Warszawa.

  • [43] Dorau K. Pluta M. (1981). Przegląd Włókienniczy 2 70.

  • [44] Urbańczyk G. W. (2002). Fizyka Włókna PŁ Łódź.

  • [45] Hindeleh A. M. Johnson D. J. (1971). The resolution of multipeak data in fibre science. Journal of Physics D: Applied Physics 4 259.

  • [46] Hindeleh A. M. Johnson D. J. (1978). Crystallinity and crystallite size measurement in polyamide and polyester fibres. Polymer 19 27-35.

  • [47] Sztajnowski S. Puchalski M. Krucińska I. Sulak K. (2012). Fibres & textiles in Eastern Europe 20 6B (96) 89.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 14
PDF Downloads 20 20 5