Multifunctional Finishing of Cotton Fabric

Open access

Abstract

The research in textiles is being driven by ecology, economy, and functionality. Therefore, the present research is focused on the development of multifunctional textiles that consume minimum energy during their processing, eco-friendly chemicals for functionalization, and use short processing steps. Eco-friendly cross-linkers such as butanetetracarboxylic acid and zinc oxide nanoparticles are used to impart wrinkle recovery, antibacterial activity, ultraviolet (UV) protection, bending rigidity, and antistatic properties to cotton fabric just in one step. The treated fabric has been characterized with Fourier-transform infrared spectrophotometer, scanning electron microscope, and X-ray diffractometer. Wrinkle recovery, tear strength, antibacterial activity, UV protection, and antistatic properties were tested with AATCC 66-1990, ASTM D 1224, AATCC 147, AATCC 183, and UNI EN 1149, respectively. The treated fabric shows excellent functional properties up to 20 washing cycles.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Almeida L. (0000). Functionalisation of textiles: future perspectives. Web site: http://hdl.handle.net/1822/6041.

  • [2] Hewson M. (1994). Formaldehyde in textiles. Journal of the Society of Dyers and Colourists 110(4) 140-142.

  • [3] Morrison S. R. Freund T. (1967). Chemical role of holes and electrons in ZnO photocatalysis. The Journal of Chemical Physics 47(4) 1543-1551.

  • [4] Ashraf M. Frédéric D. Campagne C. Champagne P. Perwuelz A. et al. (2014). Development of antibacterial polyester fabric by growth of ZnO nanorods. Journal of Engineered Fabrics and Fibers 9(1) 15-22.

  • [5] Khan M. Z. Ashraf M. Hussain T. Rehman A. Malik M.M. et al. (2015). In situ deposition of TiO2 nanoparticles on polyester fabric and study of its functional properties. Fibers and Polymers 16(5) 1092-1097.

  • [6] Nazari A. Montazer M. Mirjalili M. Nazari S. (2012). Polyester with durable UV protection properties through using nano TiO2 and polysiloxane softener optimized by RSM. The Journal of The Textile Institute 104(5) 511-520.

  • [7] Ates E. S. Unalan H. E. (2012). Zinc oxide nanowire enhanced multifunctional coatings for cotton fabrics. Thin Solid Films 520(14) 4658-4661.

  • [8] Ashraf M. Champagne P. Perwuelz A. Campagne C. Leriche A. (2014). Photocatalytic solution discoloration and self-cleaning by polyester fabric functionalized with ZnO nanorods. Journal of Industrial Textiles 44 1-15.

  • [9] Baghriche O. Rtimi S. Pulgarin C. Roussel C. Kiwi J. (2013). RF-plasma pretreatment of surfaces leading to TiO2 coatings with improved optical absorption and OHradical production. Applied Catalysis B: Environmental 130–131 65-72.

  • [10] Ashraf M. Champagne P. Campagne C. Perwuelz A. Dumont F. et al. (2014). Study the multi self-cleaning characteristics of ZnO nanorods functionalized polyester fabric. Journal of Industrial Textiles 45(6) 1440-1456.

  • [11] Yang C. Q. Lan X. Shiqi L. Yanqiu J. (1998). Nonformaldehyde durable press finishing of cotton fabrics by combining citric acid with polymers of maleic acid. Textile Research Journal 68(6) 457-464.

  • [12] Welch C. M. (1988). Tetracarboxylic acids as formaldehyde-free durable press finishing agents: Part I: catalyst additive and durability studies. Textile Research Journal 58(8) 480-486.

  • [13] Yang C. Q. Chen D. Guan J. He Q. (2010). Crosslinking cotton cellulose by the combination of maleic acid and sodium hypophosphite: fabric wrinkle resistance. Industrial & Engineering Chemistry Research 49(18) 8325-8332.

  • [14] Jiang Y. O’Neill A. J. Ding Y. (2015). Zinc oxide nanoparticle-coated films: fabrication characterization and antibacterial properties. Journal of Nanoparticle Research 17(4) 1-9.

  • [15] Shirgholami M. A. Nazari A. Mirjalili M. (2015). Statistical optimization of self-cleaning technology and color reduction in wool fabric by nano zinc oxide and eco-friendly crosslinker. Clean Technologies and Environmental Policy 17(4) 905-919.

  • [16] Ashraf M. Irshad F. Umar J. Farooq A. Ashraf M. A. (2016). Development of a novel curing system for low temperature curing of resins with the aid of nanotechnology and ultraviolet radiation. RSC Advances 6 81069-81075.

  • [17] Bajaj P. (2002). Finishing of textile materials. Journal of Applied Polymer Science 83(3) 631-659.

  • [18] Nazari A. Montazer M. Nasirizadeh N. Namiranian B. (2013). Cellulase pretreatment on mercerized cotton to enhance X-linking self-cleaning and antibacterial properties using nano TiO2/CA/BTCA: statistical approaches. Journal of Engineered Fibers and Fabrics 8 114-125.

  • [19] Grancaric A. M. Tarbuk A. Pusic T. (2005). Electrokinetic properties of textile fabrics. Coloration Technology 121(4) 221-227.

  • [20] Luo M. Shen C. Feltis B. N. Martin L. L. Hughes A. E. et al. (2014). Reducing ZnO nanoparticle cytotoxicity by surface modification. Nanoscale 6(11) 5791-5798.

  • [21] Zhang G. Liu Y. Morikawa H. Chen Y. (2013). Application of ZnO nanoparticles to enhance the antimicrobial activity and ultraviolet protective property of bamboo pulp fabric. Cellulose 20(4) 1877-1884.

  • [22] Smijs T. G. Pavel S. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnology Science and Applications 4(4) 95-112.

  • [23] Latha M. S Martis J. Shobha V. Shinde R. S. Bangera S. et al. (2013). Sunscreening agents: a review. The Journal of Clinical and Aesthetic Dermatology 6(1) 16-26.

  • [24] Sirelkhatim A. Mahmud S. Seeni A. Kaus N. H. M. Ann L. C. et al. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters 7(3) 219-242.

  • [25] Lam Y. -L. Kan C. -W. Yuen C. -W. M. (2012). Developments in functional finishing of cotton fibres– wrinkle-resistant flame-retardant and antimicrobial treatments. Textile Progress 44(3-4) 175-249.

  • [26] Mishra R. Militky J. Baheti V. Huang J. Kale B. et al. (2014). The production characterization and applications of nanoparticles in the textile industry. Textile Progress 46(2) 133-226.

  • [27] Wong Y. W. H. Yuen C. W. M. Leung M. Y. S. Ku S. K. A. Lam H. L. I. (2006). Selected applications of nanotechnology in textiles. AUTEX Research Journal 6 (1) 1-8.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 355 356 42
PDF Downloads 255 255 35