Enhanced Photocatalytic Properties of Ag-Loaded N-Doped Tio2 Nanotube Arrays

Open access

Abstract

Highly ordered TiO2 nanotube (TiO2 NT) arrays were prepared by anodic oxidizing method on the surface of the Ti substrate. Nitrogen-doped TiO2 nanotube (N-TiO2 NT) arrays were carried out by ammonia solution immersion, and Ag nanoparticles loaded N-doped TiO2 nanotube (Ag/N-TiO2 NT) arrays were obtained by successive ionic layer adsorption and reaction (SILAR) technique. The samples were characterized by the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) emission spectra, ultraviolet–visible (UV–vis) diffuse reflectance spectroscopy (DRS). The result indicated that the diameter and wall thickness of the TiO2 NT are 100–120 and 20–30 nm, respectively. Moreover, the morphology and structure of the highly ordered TiO2 NTs were not affected by N-doping. Furthermore, Ag nanoparticles were evenly deposited on the surface of TiO2 NTs in the form of elemental silver. Finally, the photocatalytic activity of Ag/N-TiO2 NTs was evaluated by degradation of methyl orange (MO) under visible-light irradiation. The Ag/N-TiO2 NTs exhibited enhanced photocatalytic properties, which could reach 95% after 90-min irradiation.

[1] Eperon G. E., Burlakov V. M., Docampo P., Goriely A., Snaith H.J. (2014). Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater., 24, 151-157.

[2] Mei A., Li X., Liu L., Ku Z., Liu T., Rong Y., Xu M., Hu M. (2014). A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345, 295-8.

[3] Xu G., Liu H., Wang J., Lv J., Zheng Z., Wu Y. (2014). Photoelectrochemical Performances and Potential Applications of TiO2 Nanotube Arrays Modified with Ag and Pt Nanoparticles. Electrochim. Acta, 121, 194-202.

[4] Lan C. S., Leong K. H., Ibrahim S., Saravanan P. (2014) Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance. J. Mater. Chem. A, 2, 5315-5322.

[5] Yu D., Zhu X., Xu Z., Zhong X., Gui Q., Song Y. (2014) Facile Method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS App.l Mater. Inter., 6, 8001-8005.

[6] Park H., Lee J., Park T., Lee S., Yi W. (2015). Enhancement of photo-current conversion efficiency in a CdS/CdSe quantum-dot-sensitized solar cell incorporated with single-walled carbon nanotubes. J. Nanosci. Nanotechno., 15, 1614-1617.

[7] Fang-Xing X., Hung S.-F., Miao J., Wang H. Y., Yang H. (2015). Metal-Cluster-Decorated TiO2 Nanotube Arrays: A Composite Heterostructure toward Versatile Photocatalytic and Photoelectrochemical Applications. Small, 11, (5), 554-567.

[8] Kilinc N., sennik E., Isik M., Ahsen A. S., Öztürk O., Öztürk, Z. Z. (2014). Fabrication and gas sensing properties of C-doped and un-doped TiO2, nanotubes. Ceram. Int., 40, (1), 109-115.

[9] 9.. Luo J., Chen J., Wang H., Liu H. (2016). Ligand-exchange assisted preparation of plasmonic Au/TiO2 nanotube arrays photoanodes for visible-light-driven photoelectrochemical water splitting. J. Power. Sources, 303, 726-729.

[10] Chen X., Song Y., Lu L., Cheng C., Liu D., Fang X. (2013). Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance. Nanoscale Res. Lett., 8, (1), 1-7.

[11] Fang X. X., Hung S. F., Miao J., Wang H., Yang H., Liu B. (2015). Metal-cluster-decorated TiO2 nanotube arrays: a composite heterostructure toward versatile photocatalytic and photoelectrochemical applications. Small, 11, 554-567.

[12] Gao Y., Fang P., Chen F., Liu Y., Liu Z. (2013). Enhancement of stability of N-doped TiO2 photocatalysts with Ag loading [J]. Appl. Surf. Sci., 265, 796-801.

[13] Cheng X., Cheng Q., Li B., Deng X., Li J. (2015). One-step construction of N/Ti3+ co-doped TiO2 nanotubes photoelectrode with high photoelectrochemical and photoelectrocatalytic performance. Electrochim. Acta, 186, :442-448.

[14] Iliev V., Tomova D., Rakovsky S. (2010). Nanosized N-doped TiO2, and gold modified semiconductors-photocatalysts for combined UV-visible light destruction of oxalic acid in aqueous solution[J]. Desalination, 260, (1-3), 101-106.

[15] Wu R. J., Hsieh Y. C., Hung H. C. (2014). Visible Light Photocatalytic Activity of Pt/N-TiO2 towards Enhanced H2 Production from Water Splitting. J. Chin. Chem. Soc., 61(4), 495–500.

[16] Gao Y., Fang P., Chen F., Liu Y., Liu Z., Wang D. (2013). Enhancement of stability of N-doped TiO2 photocatalysts with Ag loading. Appl. Surf. Sci., 265, 796-801.

[17] Yang S., Wang H., Yu H., Zhang S., Fang Y. (2016). Zhang S., A facile fabrication of hierarchical Ag nanoparticles-decorated N-TiO2 with enhanced photocatalytic hydrogen production under solar light. Int. J. Hydrogen Energy, 41, 3446-3455.

[18] Zhang S., Peng F., Wang H., Yu H., Zhang S., Yang J. (2011). Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Catal. Commun., 12, 689-693.

[19] Liang Y., Cui Z., Zhu S., Liu Y., Yang X. (2011). Silver nanoparticles supported on TiO2 nanotubes as active catalysts for ethanol oxidation. J. Catal., 278, 276-287.

[20] Liu G., Jaegermann W., He J., Sundström V., Sun L. (2002). XPS and UPS characterization of the TiO2/ZnPcGly heterointerface: alignment of energy levels. J. Phys. Chem. B, 106, 5814-5819.

[21] Yuan Y., Ding J., Xu J., Deng J., Guo J. (2010). TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application. J. Nanosci. Nanotechno., 10, 4868-4874.

[22] Peng F., Cai L. F., Yu H., Wang H., Yang J. (2008). Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. J. Solid. State Chem., 181, 130-136.

[23] Antony R. P., Mathews T., Panda K. (2012). Enhanced Field Emission Properties of Electrochemically Synthesized Self-Aligned Nitrogen-Doped TiO2 Nanotube Array Thin Films. J. Phys. Chem. C, 116(31):16740-16746.

[24] Yu J. G., Xiong J. F., Cheng B., Liu S. (2005). Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl. Catal. B-Environ., 60, 211-221.

[25] Gao Y., Fang P., Chen F., Liu Y., Liu Z. (2013). Enhancement of stability of N-doped TiO2 photocatalysts with Ag loading. Appl. Surf. Sci., 265, 796-801.

[26] Sun T.; Fan J.; Liu E.; Liu L.; Wang Y.; Dai H. (2012). Fe and Ni co-doped TiO2, nanoparticles prepared by alcohol-thermal method: Application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol., 228, 210-218.

[27] Niishiro R., Kato H., Kudo A. (2005). Nickel and either titanium or niobium co-doped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. P. C. C. P., 7, 2241-2245.

[28] Zhang S., Peng F., Wang H., Yu H., Zhang S. (2011). Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Catalysis Communications, 12, (8), 689-693.

[29] Song X., Gao L. (2007). Synthesis, characterization, and optical properties of well-defined N-doped, hollow silica/titania hybrid microspheres. Langmuir, 23, (23), 11850-11856.

[30] Yang S., Wang H., Yu H., Zhang S., Fang Y. (2016). A facile fabrication of hierarchical Ag nanoparticles-decorated N-TiO2 with enhanced photocatalytic hydrogen production under solar light. Int. J. Hydrogen Energy, 41, (5), 3446-3455.

[31] Lan M., Zhang Y., Wang P. N. (2008). First-principles study of the hydrogen doping influence on the geometric and electronic structures of N-doped TiO2. Chem. Phys. Lett., 458, 341-345.

[32] Dong P., Wang Y., Cao B., Xin S., Guo L.(2013). Ag3PO4/reduced graphite oxide sheets nanocomposites with highly enhanced visible light photocatalytic activity and stability. Appl. Catal. B Environmental, 132-133, (9), 45-53.

[33] Zhang Q., Wang L., Feng J., Xu H., Yan W. (2014). Enhanced photoelectrochemical performance by synthesizing CdS decorated reduced TiO2 nanotube arrays. Phys. Chem. Chem. Phys., 16, (42), 23431-23439.

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

Journal Information


IMPACT FACTOR 2017: 0.957
5-year IMPACT FACTOR: 1.027

CiteScore 2017: 1.18

SCImago Journal Rank (SJR) 2017: 0.448
Source Normalized Impact per Paper (SNIP) 2017: 1.465

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 480 473 44
PDF Downloads 229 228 23