Modified Polymer Materials for Use in Selected Personal Protective Equipment Products

Open access

Abstract

The paper discusses the methods of modification of melt-blown polymer materials by the addition of a bactericidal agent or superabsorbent directly to the fibre-forming area during the melt-blown production process. It also presents tests of textile composites designed for use in selected types of personal protective equipment worn in the workplace. One example of the application of textile composites is the protective footwear insole. The insole composites contain specially developed variants of melt-blown nonwovens made from PP, PC, and PA fibres. Microbiological, hygienic, and mechanical tests have shown that the optimum insoles for all-rubber protective footwear are those made of bioactive composites containing a PC melt-blown nonwoven. Another example of composite application is the air-purifying half mask. Filter composites contain polymer nonwovens with the addition of different quantities of a superabsorbent. They have been tested for particle penetration, airflow resistance, and moisture sorption.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Brochocka A. Mian I. Majchrzycka K. Sielski J. & Tyczkowski J. (2013) Plasma modified polycarbonate nonwovens as filtering material for liquid aerosols. Fibres and Textiles in Eastern Europe 22(103) 80-84.

  • [2] Brochocka A. & Majchrzycka K. (2009). Technology for the Production of Bioactive Melt-blown Filtration Materials Applied to Respiratory Protective Devices. Fibres and Textiles in Eastern Europe 17(76) 92–98.

  • [3] Brochocka A. Majchrzycka K. & Domaradzka S.N (2002). Wpływ warunków aktywacji elektrostatycznej włóknin pneumotermicznych na ich właściwości filtracyjne (Influence of electrostatic activation conditions on the filtration properties of melt-blown nonwovens). Bezpieczeństwo Pracy 4 26–28.

  • [4] Brochocka A. Majchrzycka K. & Makowski K. (2012). Penetration of different nanoparticles through melt – blown filter media used for respiratory protective devices. Textile Research Journal 82(18) 1906 – 1919

  • [5] Chen G.J. Xiao H.M. & Wang X. (2009). Parameter optimization of corona charging for melt-blown polypropylene electret nonwoven web used as air filter. In ICPADM Harbin China 19-23 July 2009 paper no D-15 pp 389–391 China

  • [6] Connor D.J. (1999) Insoles liners and footwear incorporating loofah material. Patent 5930916. USA.

  • [7] Czaplicki A. (2006). New method and equipment for manufacturing new adsorptive materials with active carbon content. Fibres and Textiles in Eastern Europe 4(58) 75-78.

  • [8] Das D. Thakur R. & Pradhan A.K. (2012). Optimization of corona discharge process using Box-Behnken design of experiments. Journal of Electrostatics 70(4) 469-473.

  • [9] Dean N. (2011) Shoe insoles with flexible inserts. Patent US20110162234 A1. USA

  • [10] Deeds W.E. (1992). Charging apparatus for meltblown webs. Patent US5122048 (A). USA.

  • [11] Dutkiewicz J. (2002). Superabsorbent materials from shellfish waste - A review. Journal of Biomedical Material Research 63(3) 245–381.

  • [12] EN 13274-3:2001. Respiratory protective devices - Methods of test - Determination of breathing resistance

  • [13] EN 13274-7:2008. Respiratory protective devices - methods of test - part 7: determination of particle filter penetration

  • [14] EN 1392:2007. Adhesives For Leather And Footwear Materials-solvent-based And Dispersion Adhesives-testing Of Bond Strength Under Specified Conditions

  • [15] EN 14119:2005. Testing of textiles - Evaluation of the action of microfungi

  • [16] EN 149:2001+A1:2009. Respiratory protective devices. Filtering half masks to protect against particles. Requirements testing marking

  • [17] Falkiewicz-Dulik M. & Macura A.B. (2006). Higiena obuwia w profilaktyce grzybicy stóp (Footwear hygiene in foot mycosis prophylaxis). Mikologia Lekarska 13(4) 265-271

  • [18] Gulbiniene A. Jankauskaite V. & Kondratas A. (2011). Investigation of the Water Vapour Transfer Properties of Textile Laminates for Footwear Linings. Fibres and Textiles in Eastern Europe 19(86) 78–81

  • [19] Irzmańska E. (2014). Footwear use at workplace and recommendations for the improvement of its functionality and hygiene. AUTEX Research Journal 14(2) 89–94

  • [20] Irzmańska E. Brochocka A. & Majchrzycka K. (2012). Textile composite materials with bioactive melt-blown nonwovens for protective footwear. Fibres and Textiles in Eastern Europe 20(95) 119-125.

  • [21] Irzmańska E. Dutkiewicz J. & Irzmański R. (2014). New approach to assessing comfort of use of protective footwear with a textile liner and its impact on foot physiology. Textile Research Journal 84(7) 728–738

  • [22] Irzmańska E. Orlikowski W. Brochocka A. & Majchrzycka K. (2013) Composite insole for nonpermeable footwear. Patent application P.406296. Poland

  • [23] ISO 20345:2007. Personal protective equipment - Protective footwear

  • [24] ISO 20645:2006. Textile fabrics - Determination of antibacterial activity - Agar diffusion plate test

  • [25] ISO 5084:1999. Textiles - Determination of thickness of textiles]

  • [26] Kałużka J. & Kudzin M. (2011). Włóknina kompozytowa do filtracji powietrza o właściwościach przeciwdrobnoustrojowych. Patent application P 393698 Poland

  • [27] Krucińska I. Strzembosz W. Majchrzycka K. Brochocka A. & Sulak K. (2012). Biodegradable particle filtering half masks for respiratory protection. Fibres and Textiles in Eastern Europe 6B(96) 77–83

  • [28] Kubik D.A. & Davis D.I. (1980). Melt-blown fibrous electrets. Patent US4215682 (A). USA.

  • [29] Kuklane K. (2004). The use of footwear insulation values measured on a thermal foot model. International Journal of Occupational Safety and Ergonomics 10(1) 79-86.

  • [30] Lim L.T. Auras R. & Rubino M. (2008). Processing technologies for poly(lactic acids). Progress in Polymer Science 33(8) 820 – 852.

  • [31] Motyl E. & Łowkis B. (2006). Effect of air humidity on charge decay and lifetime of PP electret nonwovens. Fibres and Textiles in Eastern Europe 14(5) 39-42.

  • [32] Nifuku M. Zhou Y. Kisiel A. Kobayashi T. & Katoh H. (2001). Charging characteristics for electret filter materials. Journal of Electrostatics 51–52 200-205

  • [33] Orlikowski W. Brochocka A. & Majchrzycka K. (2013). Głowica do wytwarzania modyfikowanych elektretowych włóknin pneumotermicznych (Spinning head for the production of modified electret melt-blown nonwovens). Patent application P.406216. Poland

  • [34] PN-EN 31092:1998. Textiles-determination of physiological properties measurement of thermal and water-vapour resistance under steady-state conditions (sweating quarded-hotplate test)

  • [35] Togahashi R. & Ando K. (1991). Melting a polymer spinning fibers and putting in a binder and charging. Patent US5051159 (A). Japan]

  • [36] Tsai P.P. Schreuder-Gibson H. & Gibson P. (2002). Different electrostatic methods for making electret filters. Journal of Electrostatics 54(3-4) 333-341.

  • [37] Twarowska-Schmidt K. (2004). Evaluation of the suitability of some biodegradable polymers for the forming of fibres. Fibres and Textiles in Eastern Europe 12(46) 15 – 18.

  • [38] Urbaniak – Domagała W. Wrzosek H. Szymanowski H. Majchrzycka K. & Brochocka A. (2010). Plasma modification of filter nonwovens used for the protection of respiratory tracts. Fibres and Textiles in Eastern Europe 83 (6) 94–99

  • [39] Wadsworth L.C. & Hersh S.P. (1983). Method of making fibrous electrets. Patent US4375718 (A).USA

  • [40] Wcisło P. Kałużka J. & Pęczkowska B. (2006). Biodegradable polymers in melt-blown technology. Przegląd Włókienniczy 1 28–30.

  • [41] Yang Z.Z Linm J.H. Tsai I.S. & Kuo T.Y. (2002). Particle filtration with electret of nonwoven polypropylene fabric. Textile Research Journal 72(12) 1099–1104.

  • [42] Żenkiewicz M. Rytlewski P. & Malinowski R. (2011). Metody i urządzenia stosowane w modyfikowaniu tworzyw polimerowych plazma niskotemperaturową (Methods and equipment used in polymer modification with low-temperature plasma). Polimery-W 56(3) 185–195.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 365 187 0
PDF Downloads 189 112 4