Influence of Fabric Parameters on Thermal Comfort Performance of Double Layer Knitted Interlock Fabrics

Open access

Abstract

The aim of this study was to analyse the effects of various fabric parameters on the thermal resistance, thermal conductivity, thermal transmittance, thermal absorptivity and thermal insulation of polyester/cotton double layer knitted interlock fabrics. It was found that by increasing fibre content with higher specific heat increases the thermal insulation while decreases the thermal transmittance and absorptivity of the fabric. It was concluded that double layer knitted fabrics developed with higher specific heat fibres, coarser yarn linear densities, higher knitting loop length and fabric thickness could be adequately used for winter clothing purposes.

[1] Slater, K. Human Comfort. C. C. Thomas, Springfield, Illinois, 1985

[2] Saville, B. P. Comfort. In: Physical Testing of Textiles. Woodhead Publishing Ltd., Cambridge, England, 1999, pp. 209-243

[3] Ciesielska-Wrobel, I., De Mey, G. and Van Langenhove, L. Dry heat transfer from the skin surface into textiles: subjective and objective measurement of thermal haptic perception of textiles – preliminary studies. In: The Journal of The Textile Institute, 2015, pp. 1-11

[4] Havenith, G. Individualized model of human thermoregulation for the simulation of heat stress response. 2001

[5] Havenith, G., Holmér, I. and Parsons, K. Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. In: Energy and Buildings, 2002, vol. 34, issue 6, pp. 581-591

[6] Fiala, D., Havenith, G., Bröde, P., Kampmann, B. and Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. In: International Journal of Biometeorology, 2012, vol. 56, issue 3, pp. 429-441

[7] Afzal, A., Hussain, T., Mohsin, M., Rasheed, A. and Ahmad, S. Statistical models for predicting the thermal resistance of polyester/cotton blended interlock knitted fabrics. In: International Journal of Thermal Sciences, 2014, vol. 85, pp. 40-46

[8] Cimilli, S., Nergis, B. U. and Candan, C. A comparative study of some comfort related properties of socks of different fiber types. In: Textile Research Journal, 2010, vol. 80, issue 10, pp. 948-957

[9] Schneider, A. M., Hoschke, B. N. and Goldsmid, H. J. Heat transfer through moist fabrics. In: Textile Research Journal, 1992, vol. 62, issue 2, pp. 61-66

[10] Wan, X., Fan, J. and Wu, H. Measurement of thermal radiation properties of penguin down and other fibrous materials using FTIR. In: Polymer Testing, 2009, vol. 28, pp. 673-679

[11] Schacher, L., Adolphe, D. C. and Drean, J. Y. Comparison between thermal insulation and thermal properties of classical and microfibres polyester fabrics. In: International Journal of Clothing Science and Technology, 2000, vol. 12, issue 2, pp. 84-95

[12] Ramakrishnan, B., Durai, B. and Mukhopadhyay, S. An investigation into the properties of knitted fabrics made from viscose microfibres. In: Journal of Textile and Apparel, Technology and Management, 2009, vol. 6, pp. 1-9

[13] Oglakcioglu, N., Celik, P., Ute, T. B., Marmarali, A. and Kadoglu, H. Thermal comfort properties of angora rabbit/cotton fiber blended knitted fabrics. In: Textile Research Journal, 2009, vol. 79, issue 10, pp. 888-894

[14] Pac, M. J., Bueno, M. A. and Renner, M. Warm-cool feeling relative to tribological properties of fabrics. In: Textile Research Journal, 2001, vol. 71, issue 9, pp. 806-812

[15] Ozdil, N., Marmarali, A. and Kretzschmar, S. D. Effect of yarn properties on thermal comfort of knitted fabrics. In: International Journal of Thermal Sciences, 2007, vol. 46, pp. 1318-1322

[16] Majumdar, A., Mukhopadhyay, S. and Yadav, R. Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibers. In: International Journal of Thermal Sciences, 2010, vol. 49, pp. 2042-2048

[17] Khoddami, A., Carr, C. M. and Gong, R. H. Effect of hollow polyester fibres on mechanical properties of knitted wool/polyester fabrics. In: Fibers and Polymers, 2009, vol. 10, issue 4, pp. 452-460

[18] Greyson, M. Encyclopedia of composite materials and components. Wiley & Sons, USA, 1983

[19] Havenith, G. Interaction of clothing and thermoregulation. In: Exogenous Dermatology, 2002, vol. 1, issue 5, pp. 221-230

[20] Milenkovic, L., Skundric, P., Sokolovic, R. and Nikolic, T. Comfort properties of defence protective clothing. In: The Scientific Journal Facta Universitatis, 1999, vol. 1, issue 4, pp. 101-106

[21] Ucar, N. and Yilmaz, T. Thermal Properties of 1×1, 2×2 and 3×3 rib knit fabrics. In: Fibers and Textiles in Eastren Europe, 2004, vol. 12, issue 3, pp. 34-38

[22] Oglakcioglua, N. and Marmarali, A. Thermal comfort properties of some knitted structures. In: Fibers and Textiles in Eastern Europe, 2007, vol. 15, issue 5, pp. 94-96

[23] Afzal, A., Hussain, T., Malik, M. H. and Javed, Z. Statistical model for predicting the air permeability of polyester/cotton-blended interlock knitted fabrics. In: The Journal of The Textile Institute, 2014, vol. 105, issue 2, pp. 214-222

[24] ASTM D 1776. Standard practice for conditioning and testing textiles. ASTM International, 2004

[25] ISO 11092. Textile - Physiological effects - Measurement of thermal and water vapour resistance under steady state conditions (sweating guarded hotplate test). International Organization for Standardization, 2014

[26] Atlas M259B Sweating guarded hotplate instruction manual. SDL Atlas Inc., 2010

[27] Morton, W. E. and Hearle, J. W. S. Thermal properties. In: Physical Properties of Textile Fibers. Woodhead Publishing Ltd., Cambridge, England, 2008, pp. 168-177

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

Journal Information


IMPACT FACTOR 2017: 0.957
5-year IMPACT FACTOR: 1.027

CiteScore 2017: 1.18

SCImago Journal Rank (SJR) 2017: 0.448
Source Normalized Impact per Paper (SNIP) 2017: 1.465

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 424 348 24
PDF Downloads 220 190 20