Investigation of Circular Woven Composite Preforms for Composite Pipes

Open access

Abstract

The main traditional technique for commercial manufacturing of composite pipes is filament winding in which the winding angle and the discontinuity of the structure (caused by starting and ending points of the winding process) are two important matters of concern. In the present study, circular woven fabric with its orthogonal net-shaped continuous structure was produced from polyester yarns. Fabric was wet with epoxy and hand lay-up was used to manufacture the composite pipes. Composite pipes were subjected to internal hydrostatic pressure and their burst strength was recorded. In addition, tensile strength of flat laminas was assessed in the warp and weft directions. We estimated and analysed the failure strength of composite pipes using Tresca’s failure criterion and Finite Element (FE) modeling. The experimental burst strength was almost 23% more than the FE model and 77% more than the theoretical estimate.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Czel G. Czigany T. (2012). Image processing assisted stress estimation method for ring compression tests of polymer composite pipes at large displacements. Journal of Composite Materials 46(22) 2803-2809.

  • [2] Arikan H. (2010). Failure analysis of (+/− 55 degrees)(3) filament wound composite pipes with an inclined surface crack under static internal pressure. Composite Structures 92(1) 182-187.

  • [3] Diniz Melo J. D. Levy Neto F. Barros G. d. A. de Almeida Mesquita F. N. (2011). Mechanical behavior of GRP pressure pipes with addition of quartz sand filler. Journal of Composite Materials 45(6) 717-726.

  • [4] Sari M. Karakuzu R. Deniz M. E. Icten B. M. (2012). Residual failure pressures and fatigue life of filament-wound composite pipes subjected to lateral impact. Journal of Composite Materials 46(15) 1787-1794.

  • [5] Onder A. Sayman O. Dogan T. Tarakcioglu N. (2009). Burst failure load of composite pressure vessels. Composite Structures 89(1) 159-166.

  • [6] Xia M. Takayanagi H. Kemmochi K. (2001). Analysis of multi-layered filament-wound composite pipes under internal pressure. Composite Structures 53(4) 483-491.

  • [7] Bakaiyan H. Hosseini H. Ameri E. (2009). Analysis of multi-layered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations. Composite Structures 88(4) 532-541.

  • [8] Frost S. R. Cervenka A. (1994). Glass-fiber-reinforced epoxy matrix filament-wound pipes for use in the oil industry. Composites Manufacturing 5(2) 73-81.

  • [9] Kruijer M. P. Warnet L. L. Akkerman R. (2006). Modelling of the viscoelastic behaviour of steel reinforced thermoplastic pipes. Composites Part A-Applied Science and Manufacturing 37(2) 356-367.

  • [10] Rosenow M. W. K. (1984). Wind angle effects in glass fiber-reinforced polyester filament wound pipes. Composites 15(2) 144-152.

  • [11] Kitching R. Hose D. R. (1989). Laminated pipe bends of mixed wall construction subjected to an inplane bending moment. Journal of Strain Analysis for Engineering Design 24(3) 127-138.

  • [12] Kitching R. Myler P. Tan A. L. (1988). Grp pipe bends subjected to out-of-plane flexure with and without pressure. Journal of Strain Analysis for Engineering Design 23(4) 187-199.

  • [13] Hwang T. Park J. Kim H. (2012). Evaluation of fiber material properties in filament-wound composite pressure vessels. Composites Part A-Applied Science and Manufacturing 43(9) 1467-1475.

  • [14] Samanci A. Avci A. Tarakcioglu N. Sahin O. S. (2008). Fatigue crack growth of filament wound GRP pipes with a surface crack under cyclic internal pressure. Journal of Materials Science 43(16) 5569-5573.

  • [15] Samanci A. Tarakcioglu N. Akdemir A. (2012). Fatigue failure analysis of surface-cracked (+/− 45 degrees) (3) filament-wound GRP pipes under internal pressure. Journal of Composite Materials 46(9) 1041-1050.

  • [16] Cabrera N. O. Alcock B. Klompen E. T. J. Peijs T. (2008). Filament winding of co-extruded polypropylene tapes for fully recyclable all-polypropylene composite products. Applied Composite Materials 15(1) 27-45.

  • [17] Arellano M. T. Crouzeix L. Douchin B. Collombet F. Hernandez Moreno H. et al (2010). Strain field measurement of filament-wound composites at +/− 55 degrees using digital image correlation: An approach for unit cells employing flat specimens. Composite Structures 92(10) 2457-2464.

  • [18] Ellyin F. Carroll M. Kujawski D. Chiu A. S. (1997). The behavior of multidirectional filament wound fibreglass/epoxy tubulars under biaxial loading. Composites Part A-Applied Science and Manufacturing 28(9-10) 781-790.

  • [19] Baranger E. Allix O. Blanchard L. (2009). A computational strategy for the analysis of damage in composite pipes. Composites Science and Technology 69(1) 88-92.

  • [20] Buarque E. N. d’Almeida J. R. M. (2007). The effect of cylindrical defects on the tensile strength of glass fiber/vinyl-ester matrix reinforced composite pipes. Composite Structures 79(2) 270-279.

  • [21] Kitching R. Hose D. R. Preistner R. Hashemizadeh S. H. (1997). Fracture of glass-reinforced plastic pipes of mixed wall construction under pressure loading. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering 211(E4) 223-246.

  • [22] Yu H. N. Kim S. S. Hwang I. U. Lee D. G. (2008). Application of natural fiber reinforced composites to trenchless rehabilitation of underground pipes. Composite Structures 86(1-3) 285-290.

  • [23] Fawzia S. Al-Mahaidi R. Zhao X. L. Rizkalla S. (2007). Strengthening of circular hollow steel tubular sections using high modulus CFRP sheets. Construction and Building Materials 21(4) 839-845.

  • [24] Haedir J. Zhao X. (2011). Design of short CFRP-reinforced steel tubular columns. Journal of Constructional Steel Research 67(3) 497-509.

  • [25] Amid H. Jeddi A. A. A. Salehi M. Dabiryan H. (2011). Suitability of tubular woven fabric as the reinforcement of composite pipes. Proceedings of ATC-11Daegu South Korea.

  • [26] Sharma S. B. Potluri P. Atkinson J. Porat I. (2001). Mapping of tubular woven composite preforms on to doubly-curved surfaces. Computer-Aided Design 33(14) 1035-1048.

  • [27] Popov E. P. (1990). Engineering Mechanics of Solids. Prentice Hall (Englewood Cliffs N.J.).

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 366 248 10
PDF Downloads 194 157 16