The Influence of Pet Fibres Surface Enzymatic Modification on the Selected Properties

Open access

Abstract

The effect of changes in the surface structure of glossy polyester filaments from poly(ethylene terephthalate) in terms of its micro-topography, molecular and supermolecular structure of the fibre surface layers on selected fibre surface and volumetric properties has been assessed. The performed tests and measurements have shown that the change in the general surface characteristics of PET fibres (micro-topography and hydrophilicity) results in very beneficial changes in both their volumetric (dyeability) and surface properties (wettability, pilling, oil-soil removal and electric properties).

[1] Alisch M., Feuerhack A., Biocatalytic modification of polyethylene terephthalate fibres by esterases from actinomycete isolates, Biocatalysis and Biotransformation, Vol. 22, pp. 347-351, 2004

[2] Alisch-Mark M., Herrmann A., Zimmermann W., Increase of the Hydrophilicity of Polyethylene Terephthalate Fibres by Hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi, Biotechnology Letters, Vol. 28, Iss. 10, pp. 681-685, 2006

[3] Araújo R., Silva C., O’Neill A., Silva C., Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers, Journal of Biotechnology, Vol. 128, pp. 849-857, 2007

[4] Brueckner T., Eberl A., Heumann S., Rabe, Guebitz G. M.: Enzymatic and Chemical Hydrolysis of Poly(ethyleneterephthalate) Fabrics, Journal of Polymer Science Part A: Polymer Chemistry, Vol. 46, pp. 6435-6443, 2008

[5] Donelli I., Freddi G., Nierstrasz V. A., Taddei P., Surface structure and properties of poly-(ethylene terephthalate) hydrolyzed by alkali and cutinase, Polymer Degradation and Stability, Vol. 952008, pp. 1542-1550, 2010

[6] Donelli I., Taddei P., Smet PF, Poelman D., Nierstrasz V. A., Freddi G., Enzymatic surface modification and functionalization of PET: a water contact angle, FTIR, and fluorescence spectroscopy study, Biotechnology and Bioengineering, Vol. 103, pp. 845-856, 2009

[7] Feuerhack A., Alisch-Mark M., Kisner A., Pezzin S. H., Zimmermann W., Andreaus J., Biocatalytic surface modification of knitted fabrics made of poly (ethylene terephthalate) with hydrolytic enzymes from Thermobifida fusca KW3b, Biocatalysis and Biotransformation, Vol.26, pp. 357-364, 2008

[8] Fischer-Colbrie G., Heumann S., Biocatalysis and Biotransformation, Vol. 22, pp. 341-346, 2004

[9] Guebitz G. M., Cavaco-Paulo A.: Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers, Trends in Biotechnology, Vol. 26, pp. 32-38, 2008

[10] Heumann S., Eberl A., New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres, Journal of Biochemical and Biophysical Methods, Vol. 39, pp. 89-99, 2006

[11] Hsieh Y. L., Cram L. A., Enzymatic Hydrolysis to Improve Wetting and Absorbency of Polyester Fabrics, Textile Research Journal, Vol. 68, pp. 311-319, 1998

[12] Kim, H. R., Song, W. S., Lipase treatment of polyester fabrics, Fibres and Polymers, Vol. 7, pp. 339-343, 2006

[13] Kleeberg I., Hetz C., Biodegradation of Aliphatic-Aromatic Copolyesters by Thermomonospora fusca and Other Thermophilic Compost Isolates, Applied Environmental Microbiology, Vol. 64, pp. 1731-1735, 1998

[14] Kontkanen H., Saloheimo M., Characterization of Melanocarpus albomyces steryl esterase produced in Trichoderma reesei and modification of fibre products with the enzyme, Applied Microbiology and Biotechnology, Vol. 72, pp 696-704, 2006

[15] Lee S. H., Song W. S., Surface Modification of Polyester Fabrics by Enzyme Treatment, Fibres and Polymers., Vol.11, pp. 54-59, 2010

[16] Lipp.- Symonowicz B.: Zeszyty Naukowe, Vol. 519, 1987

[17] Liu Y., Wu G., Gu L.: Enzymatic treatment of PET fabrics for improved hydrophilicity, AATCC Review, Vol. 8, pp. 4448, 2008

[18] Marek J., Martinkova L.: “Enzymatic modification of synthetic PET textiles”, TEXCHEM 2003, Dvúr Králové n. L, May 2003

[19] Marek J., Martinkova L.: “Enzymes open the future of new PET textile applications and processing”, 3rd Int. Conference on Textile Biotechnology, Graz, June 2004

[20] Marek J., Martinkova L.: „Enzymy otwieraja nowe mozliwosci stosowania dla wyrobow wlokienniczych”, XXI Seminarium Polskich Kolorystów, Olsztyn, September 2005

[21] Marek J., Martinkova L.: Starters Of Environmentally Friendly Finishing Processes Of Cellulose And Synthetics, Cost 628 - Final Conference Tampere, September 2005

[22] Marten E., Müller R. J., Deckwer W. D., Studies on the enzymatic hydrolysis of polyesters I. Low molecular mass model esters and aliphatic polyesters, Polymer Degradation and Stability Vol. 80, pp. 485-501, 2003

[23] Müller R. J., Kleeberg I., Deckwer W. D., Biodegradation of polyesters containing aromatic constituents, Journal of Biotechnology, Vol. 86, pp. 87-95, 2001

[24] Nimchua T., Punnapayak H., Zimmermann, Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi, Biotechnology Journal., Vol.2, pp. 361-364, 2007

[25] O’Neill A., Araùjo R., Casal M., Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres, Enzyme and Microbial Technology, Vol. 40, pp. 1801, 2007

[26] O’Neill A., Cavaco-Paulo A., Monitoring biotransformations in polyesters, Biocatalysis and Biotransformation, Vol. 22, 2004, pp. 353-356

[27] PN-91/P-04871 - Textiles - Determination of the Electrical Resistance

[28] PN-EN ISO 139:2006/A1:2012P - Textiles - Standard Atmospheres For Conditioning And Testing

[29] PN-EN ISO 5079:1999 - Textiles - Fibres - Determination Of Breaking Force And Elongation At Break Of Individual Fibres

[30] PN-EN ISO 12945-1:2002 - Textiles - Determination of fabric propensity to surface fuzzing and to pilling - Part 1: Pilling box method

[31] PN-ISO 1973:1997/Ap1:1998 - Textile fibres -Determination of linear density - Gravimetric method and vibroscope method

[32] Shekhar Sharma H. S., Textile biotechnology in Europe: Hydrolases and oxidoreductases in processing, AATCC Review, Vol. 5, pp. 44-48, 2005.

[33] Silva C. M., Carneiro F., Cutinase-A new tool for biomodification of synthetic fibers, Journal of Polymer Science: Part A: Polym. Chem., Vol. 43, pp. 2448-2450, 2005

[34] Silva C., Cavaco-Paulo A., Monitoring biotransformations in polyamide fibres, Biocatalysis and Biotransformation, Vol. 22, pp. 357-360, 2004

[35] Stefanie G. M., Jump J. M., Bio-polishing of polyester and polyester/cotton fabric, Text Res J., Vol. 75, pp. 480-484, 2005

[36] US Patent Nr 5,997,584, Method of treating polyester fabrics, pp. 1-23, 1999

[37] US Patent Nr 6,933,140, Enzymes useful for changing the properties of polyester, pp. 1-6, 2005

[38] Vertommen M. A. M. E., Nierstrasz V. A., Enzymatic surface modification of poly(ethylene terephthalate), Journal of Biotechnology, Vol. 120, pp. 376-386, 2005

[39] Walter T., Augusta J., Müller R. J., Widdecke H., Klein J., Enzymatic degradation of a model polyester by lipase from Rhizopus delemar, Enzyme and Microbial Technology, Vol. 17, pp. 218-224, 1995.

[40] Xie J., Hsieh Y. L., Modification of Cellulose Solids by Enzyme Catalysed Transesterification with Vinyl Esters in Anhydrous Organic Solvents, ACS Symposium Series, Vol. 840, pp. 217-230, 2003.

[41] Yamaki J. I., Katayama Y., New method of determining contact angle between monofilament and liquid, Journal of Applied Polymer Science, Vol. 19, pp. 2897-2909, 1975.

[42] Yoon, M.-Y., Kellis, J. and Poulose, A. J., Enzymatic modification of polyester, AATCC Review, Vol. 2, pp. 3336, 2002

Autex Research Journal

The Journal of Association of Universities for Textiles (AUTEX)

Journal Information


IMPACT FACTOR 2017: 0.957
5-year IMPACT FACTOR: 1.027

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 240 212 16
PDF Downloads 103 96 8