Pure chitosan microfibres for biomedical applications

Open access


Due to its excellent biocompatibility, Chitosan is a very promising material for degradable products in biomedical applications. The development of pure chitosan microfibre yarn with defined size and directional alignment has always remained a critical research objective. Only fibres of consistent quality can be manufactured into textile structures, such as nonwovens and knitted or woven fabrics. In an adapted, industrial scale wet spinning process, chitosan fibres can now be manufactured at the Institute of Textile Machinery and High Performance Material Technology at TU Dresden (ITM). The dissolving system, coagulation bath, washing bath and heating/drying were optimised in order to obtain pure chitosan fibres that possess an adequate tenacity. A high polymer concentration of 8.0–8.5% wt. is realised by regulating the dope-container temperature. The mechanical tests show that the fibres present very high average tensile force up to 34.3 N, tenacity up to 24.9 cN/tex and Young’s modulus up to 20.6 GPa, values much stronger than that of the most reported chitosan fibres. The fibres were processed into 3D nonwoven structures and stable knitted and woven textile fabrics. The mechanical properties of the fibres and fabrics enable its usage as textile scaffolds in regenerative medicine. Due to the osteoconductive properties of chitosan, promising fields of application include cartilage and bone tissue engineering.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Muzzarelli R. A. A. Muzzarelli C.: Chitosan chemistry: relevance to the biomedical sciences Advanced Polymer Science Vol. 186 p. 151–209 2005.

  • [2] East G. C. and Qin Y.: Wet spinning of chitosan and the acetylation of chitosan fibers Journal of Applied Polymer Science Vol. 50 p. 1773–1779 1993.

  • [3] Agboh O.C. and Qin Y.: Chitin and chitosan fibres. Polymer Advanced Technology Vol. 8 p. 355–365 1997.

  • [4] Hirano S. Zhang M. Chung B. G. Kim S. K.: The N-acylation of chitosan fibre and the N-deacetylation of chitin fibre and chitin-cellulose blended fibre at a solid state Carbohydrate Polymers Vol. 41 p. 175-179 2000.

  • [5] El-Tahlawy K. Hudson S. M.: Chitosan: Aspects of fiber spinnability Journal of Applied Polymer Science Vol. 100 No 2 p. 1162-1168 2006.

  • [6] Pillai C.K.S. Paul W. Sharma C. P.: Chitin and chitosan polymers: Chemistry solubility and fiber formation Progress in Polymer Science Vol. 34 No 7 p. 641-678 2009.

  • [7] Notin L. Viton C. David L. Alcouffe P. Rochas P. Domard A.: Morphology and mechanical properties of chitosan fibers obtained by gel-spinning: Influence of the dry-jet-stretching step and ageing Acta Biomaterialia Vol. 2 p. 387-402 2006.

  • [8] Li L. Yuan B. Liu S. Yu S. Xie C. Liu F. Guo X. Pei L. Zhang B.: Preparation of High force Chitosan Fibers by Using Ionic Liquid as Spinning Solution Journal of Materials Chemistry Vol. 22 p. 8585-8593 2012.

  • [9] Ma B. Qin A. Li X. He Ch.: High tenacity regenerated chitosan fibers prepared by using the binary ionic liquid solvent (Gly·HCl)-

  • [Bmim]Cl Carbohydrate Polymers Vol.97 p. 300-305 2013.

  • [10] Li Y. Zhuang P. Zhang Y. Wang Z. Hu Q.: A new approach for preparing chitosan fibers from a LiOH/urea solvent system Materials Letters Vol.84 p. 73-76 2012.

  • [11] Moutos F. T. Freed L. E. and Guilak F.: A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage nature materials Vol. 6 p. 162-167 2007.

  • [12] Tuzlakoglu K. Alves C. M. Mano J. F. Reis R. L.: Production and Characterization of Chitosan Fibers Applications Macromolecular Bioscience Vol. 4 p. 811– 819 2004.

  • [13] Heinemann C. Heinemann S. Lode A. Bernhardt A. Worch H. Hanke T.: In Vitro Evaluation of Textile Chitosan Scaffolds for Tissue Engineering using Human Bone Marrow Stromal Cells Biomacromolecules Vol. 10 p. 1305–1310 2009.

  • [14] Bhattarai N. Edmondson D. Veiseh O. Matsen F. A. Zhang M.: Electrospun chitosan-based nanofibers and their cellular compatibility Biomaterials Vol. 26 p. 6176– 6184 2005.

  • [15] Rinaudo M. Pavlov G. Desbrières J.: Influence of acetic acid concentration on the solubilization of chitosan Polymer Vol. 40 p. 7029-7032 1999.

  • [16] Hamdine M. Heuzey M.-C. Bégin A.: Effect of organic and inorganic acids on concentrated chitosan solutions and gels International Journal of Biological Macromolecules Vol. 37 p. 134–142 2005.

  • [17] Rho J.Y.: Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements Journal of BiomechanicsVol. 26 No p. 111–119 1993.

  • [18] Shirosaki Y. Tsuru K. Satoshi Hayakawa S. Osaka A. Lopes M. A. Santos J. D. et al.: Physical chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration Acta Biomaterialia Vol. 5 p.346–355 2009.

  • [19] Hild M.; Jäger M.; Aibibu D.; Cherif Ch.; Hanke Th.: Three dimensional net-shape-nonwoven chitosan scaffolds for bone tissue engineering applications. In: CD-Rom. 13th World Textile Conference AUTEX 2013 Dresden 22.-24. Mai 2013

  • [20] Cheng T.; Hund R.; Cherif C.; Aibibu D.; Horakova M.: Chitosan and Chitosan Derivative Nanofibers Made by Single Step Electrospinning Autex Research Journal Volume 13 (Accepted)

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.927
5-year IMPACT FACTOR: 1.016

CiteScore 2018: 1.21

SCImago Journal Rank (SJR) 2018: 0.395
Source Normalized Impact per Paper (SNIP) 2018: 1.044

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 408 156 9
PDF Downloads 208 92 6