Lah numbers, Laguerre polynomials of order negative one, and the nth derivative of exp(1/x)

Open access

Abstract

In this note we point out interesting connections among Lah numbers, Laguerre polynomials of order negative one, and exponential polynomials. We also discuss several different expressions for the nth derivative of exp(1/x). A new representation of this derivative is given in terms of exponential polynomials.

[1] J. C. Ahuja, E. A. Enneking, Concavity property and a recurrence relation for associated Lah numbers, Fibonacci Quart., 17 (2) (1979), 158–161.

[2] P. Barry, Some Observations on the Lah and Laguerre Transforms of Integer Sequences, Journal of Integer Sequences, 10 (2007), Article 07.4.6

[3] K. N. Boyadzhiev, Power Series with Binomial Sums and Asymptotic Expansions, Int. Journal of Math. Analysis, 8 (28) (2014), 1389–1414.

[4] K. N. Boyadzhiev, Exponential polynomials, Stirling numbers, and evaluation of some Gamma integrals, Abstract and Applied Analysis, Volume 2009, Article ID 168672 (electronic, open source).

[5] K. N. Boyadzhiev, A Series transformation formula and related polynomials, International Journal of Mathematics and Mathematical Sciences, 2005 (2005), Issue 23, 3849–3866.

[6] Y. A. Brychkov, Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas, Chapman and Hall/CRC, 2008.

[7] Charalambos A. Charalambides, Jagbir Singh, A review of the Stirling numbers, their generalizations and statistical interpretations, Comm. Statist. Theory Methods, 17 (8) (1988), 2533–2595.

[8] C. A. Charalambides, Enumerative Combinatorics, Chapman and Hall/CRC, 2002.

[9] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.

[10] S. Daboul, J. Mangaldan, M. Z. Spivey, P. J. Taylor, The Lah Numbers and the nth Derivative of exp(1/x), Math. Magazine, 86 (1) (2013) 39–47.

[11] H. W. Gould, Combinatorial Identities, Published by the author, 1972.

[12] Bai-Ni Guo, F. Qi, Six proofs for an identity of the Lah numbers, Online Journal of Analytic Combinatorics, 10 (2015).

[13] Bai-Ni Guo, F. Qi, Some integral representations and properties of Lah numbers (arxiv.org), 2014.

[14] N. N. Lebedev, Special Functions and Their Applications, Dover, 1972.

[15] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.

[16] M. Petkovšek, T. Pisanski, Combinatorial interpretation of unsigned Stirling and Lah numbers, Preprint 40 (2002), Univ. of Ljubljana. (Available on the internet.)

[17] E. D. Rainville, Special Functions, Chelsea, 1971.

[18] I. J. Schwatt, An Introduction to the Operations with Series, Chelsea, 1924.

[19] P. G. Todorov, Taylor expansions of analytic functions related to (1 + z)x − 1, J. Math. Anal. Appl., 132 (1988), 264–280.

Acta Universitatis Sapientiae, Mathematica

The Journal of Sapientia Hungarian University of Transylvania

Journal Information


CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2017: 0.380
Source Normalized Impact per Paper (SNIP) 2017: 0.434

Mathematical Citation Quotient (MCQ) 2017: 0.10

Target Group

researchers in all fields of mathematics

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 161 16
PDF Downloads 50 50 7