Bounds on third Hankel determinant for close-to-convex functions

Open access

Abstract

In this paper, we have obtained upper bound on third Hankel determinant for the functions belonging to the class of close-to-convex functions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] K. O. Babalola On H3(1) Hankel determinant for some classes of univalent functions Inequal. Theory Appl. 6 (2007) 1-7.

  • [2] D. Bansal Upper bound of second Hankel determinant for a new class of analytic functions Appl. Math. Lett. 26 (1) (2013) 103-107.

  • [3] D. Bansal S. Maharana J. K. Prajapat Third order Hankel Determinant for certain univalent functions J. Korean Math. Soc. 52 (6) (2015) 1139-1148.

  • [4] C. Carathéodory Über den variabilitätsbereich der Fourier’schen Konstanten Von Positiven harmonischen Funktionen Rend. Circ. Mat. Palermo 32 (1911) 193-217.

  • [5] P. L. Duren Univalent Functions vol. 259 of Grundlehren der Mathematischen Wissenschaften Springer-Verlag New York Berlin Heidelberg Tokyo 1983.

  • [6] R. Ehrenborg The Hankel determinant of exponential polynomials Amer. Math. Monthly 107 (2000) 557-560.

  • [7] M. Fekete G. Szegö Eine Benberkung uber ungerada Schlichte funktionen J. London Math. Soc. 8 (1933) 85-89.

  • [8] W. K. Hayman On second Hankel determinant of mean univalent functions Proc. Lond. Math. Soc. 18 (1968) 77-94.

  • [9] W. Kaplan Close-to-convex schlicht functions Mich. Math. J. 1 (1952) 169-185.

  • [10] F. R. Keogh E. P. Merkes A coefficient inequality for certain classes of analytic functions Proc. Amer. Math. Soc. 20 (1969) 8-12.

  • [11] W. Koepf On the Fekete-Szegö problem for close-to-convex functions Proc. Amer. Math. Soc. 101 (1987) 89-95.

  • [12] A. Janteng S. Halim M. Darus Coefficient inequality for a function whose derivative has a positive real part J. Inequal. Pure Appl. Math. 7 (2) (2006) Article 50.

  • [13] S. K. Lee V. Ravichandran S. Supramaniam Bounds for the second Hankel determinant of certain univalent functions J. Inequal. Appl. 2013 (2013) Article 281.

  • [14] R. J. Libera E. J. Zlotkiewicz coefficient bounds for the inverse of a function with derivative in P Proc. Amer. Math. Soc. 87 (2) (1983) 251-257.

  • [15] R. J. Libera E. J. Zlotkiewicz Early coefficients of the inverse of a regular convex function Proc. Amer. Math. Soc. 85 (2) (1982) 225-230.

  • [16] J. W. Noonan D. K. Thomas On the second Hankel determinant of areally mean p-valent functions Trans. Amer. Math. Soc. 223 (2) (1976) 337-346.

  • [17] K. I. Noor Hankel determinant problem for the class of function with bounded boundary rotation Rev. Roum. Math. Pures Et Appl. 28 (1983) 731-739.

  • [18] K. I. Noor S. A. Al-Bany On Bazilevic functions Int. J. Math. Math. Sci. 10 (1) (1987) 79-88.

  • [19] K. I. Noor On analytic functions related with function of bounded boundary rotation Comment. Math. Univ. St. Pauli 30 (2) (1981) 113-118.

  • [20] K. I. Noor Higer order close-to-convex functions Math. Japon 37 (1) (1992) 1-8.

  • [21] C. Pommerenke On the Hankel determinants of univalent functions Mathematika 14 (1967) 108-112.

  • [22] C. Pommerenke On the coefficients and Hankel determinant of univalent functions J. Lond. Math. Soc. 41 (1966) 111-112.

  • [23] M. O. Reade On close-to-convex functions Mich. Math. J. 3 (1955-56) 59-62.

  • [24] M. Raza S. N. Malik Upper bound of the third Hankel determinant for a class of analytic functions related with Lemniscate of Bernoulli J. Inequal. Appl. 2013 (2013) Article 412.

Search
Journal information
Impact Factor


CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.558

Mathematical Citation Quotient (MCQ) 2018: 0.22

Target audience:

researchers in all fields of mathematics

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 399 188 6
PDF Downloads 160 108 10