Reconstruction of score sets

Open access

Abstract

The score set of a tournament is defined as the set of its different outdegrees. In 1978 Reid [15] published the conjecture that for any set of nonnegative integers D there exists a tournament T whose degree set is D. Reid proved the conjecture for tournaments containing n = 1, 2, and 3 vertices. In 1986 Hager [4] published a constructive proof of the conjecture for n = 4 and 5 vertices. In 1989 Yao [18] presented an arithmetical proof of the conjecture, but general polynomial construction algorithm is not known. In [6] we described polynomial time algorithms which reconstruct the score sets containing only elements less than 7. In [5] we improved this bound to 9.

In this paper we present and analyze new algorithms Hole-Map, Hole-Pairs, Hole-Max, Hole-Shift, Fill-All, Prefix-Deletion, and using them improve the above bound to 12, giving a constructive partial proof of Reid’s conjecture.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] G. Chartrand L. Lesniak J. Roberts Degree sets for digraphs Periodica Math. Hung. 7 (1976) 77-85. ⇒212

  • [2] T. H. Cormen Ch. E. Leiserson R. L. Rivest C. Stein Introduction to Algorithms (third edition) The MIT Press/McGraw Hill Cambridge/New York 2009. ⇒216

  • [3] J. L. Gross J. Yellen P. Zhang Handbook of Graph Theory CRC Press Boca Raton FL 2013. ⇒210

  • [4] M. Hager. On score sets for tournaments Discrete Math. 58 (1986) 25-34. ⇒ 210 212

  • [5] A. Iványi J. Elek Degree sets of tournaments Studia Univ. Babe,s-Bolyai Informatica 59 (2014) 150-164. ⇒210 215 223 226

  • [6] A. Iványi L. Lucz T. Matuszka G. Gombos Score sets in multitournaments I. Mathematical results Annales Univ. Sci. Budapest. Rolando E¨otv¨os Nom. Sectio Comp. 40 (2013) 307-320. ⇒210 214 215 223 226 228

  • [7] A. Iványi B. M. Phong On the unicity of the score sets of multitournaments in: Fifth Conference on Mathematics and Computer Science (Debrecen June 9-12 2004) University of Debrecen 2006 10 pages. ⇒213

  • [8] A. Iványi S. Pirzada Comparison based ranking in: ed. A. Iványi Algorithms of Informatics Vol. 3 mondAt Vác 2013 1209-1258. ⇒211

  • [9] D. E. Knuth The Art of Computer Programming Volume 4A. Addison Wesley Upper Saddle River NJ 2011. ⇒228

  • [10] H. H. Landau On dominance relations and the structure of animal societies. III. Bull. Math. Biophysics 15 (1953) 143-148. ⇒211 212

  • [11] Q. Li Some results and problems in graph theory New York Academy of Science 576 (1989) 336-343. ⇒214

  • [12] V. Petrović On bipartite score sets Zbornik Radova Prirodno-matematiˇckog Fakulteta Ser. Mat. Universitat u Novom Sadu 13 (1983) 297-303. ⇒213

  • [13] S. Pirzada A. Iványi M. A. Khan Score sets and kings in ed. A. Iványi Algorithms of Informatics mondAt Vác 2013 1337-1389. ⇒214

  • [14] S. Pirzada T. A. Naikoo On score sets in tournaments Vietnam J. Math. 34 (2006) 157-161. ⇒212

  • [15] K. B. Reid Score sets for tournaments Congressus Numer. 21 (1978) 607-618. ⇒210 212

  • [16] K. B. Reid Tournaments: Scores kings generalizations and special topics Congressus Numer. 115 (1996) 171-211. ⇒211 212 214

  • [17] K. Wayland Bipartite score sets Canadian Math. Bull. 26 (1983) 273-279. ⇒ 213

  • [18] T. X. Yao On Reid conjecture of score sets for tournaments. Chinese Science Bull. 34 (1989) 804-808. ⇒210 212 213 214

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 215 117 3
PDF Downloads 77 47 2