Energy, Laplacian energy of double graphs and new families of equienergetic graphs

Open access

Abstract

For a graph G with vertex set V(G) = {v1, v2, . . . , vn}, the extended double cover G* is a bipartite graph with bipartition (X, Y), X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, where two vertices xi and yj are adjacent if and only if i = j or vi adjacent to vj in G. The double graph D[G] of G is a graph obtained by taking two copies of G and joining each vertex in one copy with the neighbors of corresponding vertex in another copy. In this paper we study energy and Laplacian energy of the graphs G* and D[G], L-spectra of Gk* the k-th iterated extended double cover of G. We obtain a formula for the number of spanning trees of G*. We also obtain some new families of equienergetic and L-equienergetic graphs.

References

  • [1] N. Abreu, D. M. Cardoso, I. Gutman, E. A. Martins, M. Robbiano, Bounds for the signless Laplacian energy, Linear Algebra Appl. 435, 10 (2011) 2365-2374. ⇒90

  • [2] T. Aleksić, Upper bounds for Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 60, 2 (2008) 435-439. ⇒90

  • [3] R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287-295. ⇒91

  • [4] A. S. Bonifacio, C. T. M. Vinagre, N. M. Abreu, Constructing pairs of equienergetic and non-cospectral graphs, Applied Mathematics Letters 21, 4 (2008) 338-341. ⇒97, 105

  • [5] J. Carmona, I. Gutman, N. J. Tamblay, M. Robbiano, A decreasing sequence of upper bounds for the Laplacian energy of a tree, Linear Algebra Appl. 446 (2014) 304-313. ⇒90

  • [6] Z. Chen, Spectra of extended double cover graphs, Czechoslovak Math. J. 54, 4 (2004) 1077-1082. ⇒91, 92, 97, 101

  • [7] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs: Theory and Application, Academic Press, New York, 1980. ⇒92, 93

  • [8] D. Cvetkovic, S. K. Simic, Towards a spectral theory of graphs based on signless Laplacian I, Publ. Inst. Math (Beograd), 85 (2009) 19-33. ⇒90

  • [9] K. Ch. Das, I. Gutman, On incidence energy of graphs, Linear Algebra Appl. 446 (2014) 329-344. ⇒90

  • [10] G. H. Fath-Tabar, A. R. Ashrafi, Some remarks on the Laplacian eigenvalues and Laplacian energy of graphs, Math. Commun. 15 (2010) 443-451. ⇒90

  • [11] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23, 2 (1973) 298-305. ⇒90

  • [12] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszenturm Graz 103 (1978) 1-22. ⇒90

  • [13] I. Gutman, On graphs whose energy exceeds the number of vertices, Linear Algebra Appl. 429 (2008) 2670-2677. ⇒90

  • [14] I. Gutman, D. Kiarib, M. Mirzakhahb, On incidence energy of graphs, MATCH Commun. Math. Comput. Chem. 62, 3 (2009) 573-580. ⇒90

  • [15] I. Gutman, D. Kiarib, M. Mirzakhahb, B. Zhoud, On incidence energy of a graphs, Linear Algebra Appl. 431, 8 (2009) 1223-1233. ⇒90

  • [16] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer Verlag, Berlin 1986. ⇒90

  • [17] I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006) 29-37. ⇒90

  • [18] M. R. Jooyandeh, D. Kiani, M. Mirzakhah, Incidence energy of a graph, MATCH Commun. Math. Comput. Chem. 62, 3 (2009) 561-572. ⇒90

  • [19] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012. ⇒90

  • [20] J. Liu, B. Liu, E-L equienergetic graphs, MATCH Commun. Math. Comput. Chem. 66, 3 (2011) 971-976. ⇒90

  • [21] M. S. Marino, N. Z. Salvi, Generalizing double graphs, Atti dell’ Accademia Peloritana dei pericolanti classe di scienze Fisiche, Matematiche e Naturali, Vol. 85 CIA 0702002 (2007), pp. 1-9. ⇒91, 93, 103

  • [22] S. Radenkovi´c, I. Gutman, Total π-electron energy and Laplacian energy: How far the analog goes?, J. Serb. Chem. Soc. 72, 12 (2007) 1343-1350. ⇒90

  • [23] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog, I. Gutman, Equienergetic graphs, Kragujevac J. Math. 26 (2004) 5-13. ⇒ 91, 103

  • [24] L. Shi, H. Wang, The Laplacian incidence energy of graphs, Linear Algebra Appl. 439, 12 (2013) 4056-4062. ⇒90

  • [25] M. P. Stanić, I. Gutman, On almost equienergetic graphs, MATCH Commun. Math. Comput. Chem. 70, 2 (2013) 681-688. ⇒90

  • [26] Z. Tang, Y. Hou, On incidence energy of trees, MATCH Commun. Math. Comput. Chem. 66, 3 (2011) 977-984. ⇒90

  • [27] H.Wang, H. Hua, Note on Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 59, 2 (2008) 373-380. ⇒90

  • [28] F. Zhang, Matrix Theory, Basic Results and Techniques, Springer Verlag, Berlin, 1999. ⇒97

  • [29] B. Zhou, More on energy and Laplacian energy, MATCH Commun. Math. Comput. Chem. 64, 1 (2010) 75-84. ⇒90

  • [30] B. Zhou, I. Gutman, On Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 57, 1 (2007) 211-220. ⇒90

Acta Universitatis Sapientiae, Informatica

The Journal of "Sapientia" Hungarian University of Transylvania

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 27 27 18
PDF Downloads 12 12 9