On linear programming duality and Landau’s characterization of tournament

Open access

Abstract

H. G. Landau has characterized those integer-sequences S = (s1, s2, . . . , sn) which can arise as score-vectors in an ordinary round-robin tournament among n contestants [17]. If s1 ≤ s2 ≤ · · · ≤ sn, the relevant conditions are expressed simply by the inequalities:

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] G. G. Alway Matrices and sequences Math. Gazette 46 (1962) 208-213. ⇒21

  • [2] C. M. Bang H. Sharp An elementary proof of Moon’s theorem on generalized tournaments J. Comb. Theory Ser. B 22 3 (1977) 299-301. ⇒21

  • [3] C. M. Bang H. Sharp Score vectors of tournaments J. Comb. Theory Ser. B 26 1 (1979) 81-84. ⇒31

  • [4] A. Brauer I. C. Gentry K. Shaw A new proof of a theorem by H. G. Landau on tournament matrices J. Comb. Theory 5 3 (1968) 289-292. ⇒21

  • [5] R. A. Brualdi E. Fritscher Tournaments associated with multigraphs Discrete Math. 2014 17 pages (submitted). ⇒31

  • [6] P. Camion Characterization of totally unimodular matrices Proc. Amer. Math. Soc. 16 5 (1965) 1068-1073. ⇒25 7] A. B. Cruse A proof of Fulkerson’s characterization of permutation matrices Lin. Alg. Appl. 12 1 (1975) 21-28. ⇒29

  • [8] A. B. Cruse Polynomial algorithm for testing potential C-tournaments. http://www.cs.usfca.edu/cruse/recog.html. ⇒31

  • [9] G. B. Dantzig Linear Programming and Extensions Princeton University Press Princeton NJ 1963. ⇒24 25

  • [10] D. R. Fulkerson Upsets in round robin tournaments Canad. J. Math. 17 (1965) 957-969. ⇒21 30

  • [11] G. Hadley Linear Programming Addison-Wesley Reading MA 1962. ⇒24 25

  • [12] F. Harary L. Moser The theory of round robin tournaments Amer. Math. Monthly 73 3 (1966) 231-246. ⇒21

  • [13] I. Heller C. B. Tompkins An extension of a theorem of Dantzig’s in: G. B. Dantzig Linear Programming and Extensions Princeton University Press Princeton NJ 1963. pp. 247-254. ⇒25

  • [14] A. J. Hoffman J. B. Kruskal Integral boundary points of convex polyhedra in: Linear Inequalities and Related Systems (Study No. 38 of the Princeton Annals of Mathematics ed. H. W. Kuhn and A. W. Tucker) Princeton University Press Princeton NJ 1957 pp. 223-246. ⇒25

  • [15] A. J. Hoffman H. W. Kuhn Systems of distinct representatives and linear programming Amer. Math. Monthly 63 (1956) 455-460. ⇒28 29

  • [16] H. W. Kuhn A. W. Tucker (eds.) Linear Inequalities and Related Systems Ann. Math. Studies 38 Princeton University Press Princeton NJ 1956. ⇒29

  • [17] H. G. Landau On dominance relations and the structure of animal societies. III. The condition for a score structure Bull. Math. Biophys. 15 (1953) 143-148. ⇒ 21 23

  • [18] H. L. Lewis C. H. Papadimitriou The efficiency of algorithms Scientific American 238 (1978) 96-109. ⇒23

  • [19] J. W. Moon On the score sequence of an n-partite tournament Canad. Math. Bull. 5 1 (1962) 51-58. ⇒21 30

  • [20] J. W. Moon An extension of Landau’s theorem on tournaments Pacific J. Math. 13 4 (1963) 1343-1345. ⇒21 23 24

  • [21] J. W. Moon Topics on Tournaments Holt Rinehart and Winston New York 1968. ⇒21 29

  • [22] H. J. Ryser Matrices of zeros and ones. Bull. of Amer. Math. Soc. 66 6 (1960) 442-464. ⇒21

  • [23] H. J. Ryser Matrices of zeros and ones in combinatorial mathematics in: Recent Advances in Matrix Theory Proc. Advances Matrix Theory (ed. H. Schneider) University of Wisconsin Press Madison WI 1964 pp. 103-124. ⇒21 30

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 204 92 3
PDF Downloads 42 22 0