Finding suitable paths for the elliptic curve primality proving algorithm

Open access

Abstract

An important part of the Elliptic Curve Primality Proving algorithm consists of finding a sequence of elliptic curves with appropriate properties. In this paper we consider a strategy to search for an improved sequence, as part of an implementation (implemented in Magma 2.19) to obtain improved heuristics and compare it to an implementation which does not use such heuristics, namely to a built-in Magma function.

References

  • [1] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Annals Math. 160, 2 (2004) 781-793. →35

  • [2] A. O. L. Atkin, F. Morain, Elliptic curves and primality proving Math. Comp. 61, 203 (1993) 29-68. →36, 39, 41, 43

  • [3] D. Bernstein, Proving primality in essentially quartic random time, Math. Comp. 76, 257 (2007) 389-403. →35

  • [4] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24, 3-4 (1997) 235-265. →41

  • [5] G. Farkas, G. Kall´os, Prime numbers in generalized Pascal triangles, Acta Tech. Jaur. 1, 1 (2008) 109-118. →45

  • [6] G. Farkas, G. Kall´os, G. Kiss, Large primes in generalized Pascal triangles, Acta Univ. Sapientiae, Inform. 3, 2 (2011) 158-171. →45

  • [7] J. L. Hafner, K. S. McCurley, On the Distribution of Running Times of Certain Integer Factoring Algorithms, J. Algorithms 10, 4 (1989) 531-556. →43

  • [8] A. K. Lenstra, H. W. Lenstra Jr., Algorithms in number theory in: Handbook of Theoretical Computer Science (vol. A) 1990, Elsevier, Amsterdam, pp. 673-715. →36, 41

Acta Universitatis Sapientiae, Informatica

The Journal of "Sapientia" Hungarian University of Transylvania

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 10
PDF Downloads 5 5 4