Approximation of the WRB reference group with the reapplication of archive soil databases

Open access

Abstract

In our study, we tested the existing and freely accessible soil databases covering a smaller geographical region surveyed and classified according to the Hungarian classification in order to approximate the WRB soil reference groups (RSG). We tested the results and applicability of approximation for the RSG with three different methods on 12 soil profiles. First, RSGs were assigned to Hungarian soil taxa based on results of previous correlation studies, secondly, a freely accessible online database of ISRIC was applied furthermore, and an automated reclassification developed and programmed by us was used, which takes the original soil data as input.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Dobos E. (2006) The future of soil science: a vision from Europe. In: Hartemink A. E. (ed.) The future of soil science. IUSS. Wageningen 34-37.

  • [2] IUSS Working Group WRB (2014) World Reference Base For Soil Resources. International soil classification system for naming soils and creating legends for soil maps (3rd ed.). Rome: FAO.

  • [3] Fehér O. Füleky Gy. Madarász B. Kertész Á. (2006) Morphological and diagnostic properties of seven volcanic soil profiles according to the Hungarian Soil Classification and the World Reference Base for Soil Resources (WRB 1998). Agrochemistry and Soil Science. 55(2) 347-366.

  • [4] Barta K. Tanács E. Samu A. Keveiné B. I. (2009) Classification of Hungarian rendzina soils in conformity with the international World Soil Reference Base System (WRB). Agrochemistry and Soil Science 58(1) 7-18.

  • [5] Eberhardt E. Waltner I. (2010) Finding a way through the maze - WRB classification with descriptive data. In: Gilkes J. R. Prakongkep N. (eds) Soil solutions for a changing world: Proceedings of the 19th World Congress of Soil Science: 1-6 August 2010 Brisbane Australia. International Union of Soil Sciences 5-8.

  • [6] Pásztor L. Szabó J. Bakacsi Zs. (2010) Digital processing and upgrading of legacy data collected during the 1:25 000 scale Kreybig soil survey. Acta Geodaetica et Geophysica Hungarica 45 127-136.

  • [7] Shi X. Z. Yu D. S. Xu S. X. Warner E. D. Wang H. J Sun W. X. Zhao Y. C. Gong Z. T. (2010) Cross-reference for relating Genetic Soil Classification of China with WRB at different scales. Geoderma 155 344-350.

  • [8] Zádorová T. Penížek V. (2011) Problems in correlation of Czech national soil classification and World Reference Base 2006. Geoderma 167-168 54-60.

  • [9] Pásztor L. Szabó J. Bakacsi Zs. Laborczi A. (2013) Elaboration and applications of spatial soil information systems and digital soil mapping at Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences. Geocarto International 28(1) 13-27.

  • [10] Huyssteen C. W. Michéli E. Fuchs M. Waltner I. (2014) Taxonomic distance between South African diagnostic horizons and the World Reference Base diagnostics. Catena 113 276-280.

  • [11] Michéli E. Fuchs M. Hegymegi P. Stefanovits P. (2006) Classification of the major soils of Hungary and their correlation with the World Reference Base for Soil Resources (WRB). Agrochemistry and Soil Science 55(1) 19-28.

  • [12] Láng V. Fuchs M. Waltner I. Michéli E. (2010) Taxonomic distance measurements applied for soil correlation. Agrochemistry and Soil Science. 59(1) 57-64.

  • [13] Láng V. Fuchs M. Waltner I. Michéli E. (2013) Soil taxonomic distance a tool for correlation: As exemplified by the Hungarian brown forest soils and related WRB Reference Soil Groups. Geoderma 192 269-276.

  • [14] Krasilnikov P. Arnold R. Michéli E. (2009) Soil classification of Hungary. In: Krasilnikov P. Ibáñez Martí J.-J. Arnold R. Shoba S. (eds) A Handbook of soil terminology correlation and classification. London Sterling VA: Earthscan 170-175.

  • [15] Tóth Cs. Novák T. Rakonczai J. (2015) Hortobágy Puszta: Microtopography of alkali flats. In: Lóczy D. (ed.) Landscapes and landforms of Hungary. Springer Verlag 237-247.

  • [16] Dövényi Z. (2010) Inventory of microregions in Hungary. Geographical Research Institute Budapest.

  • [17] Várallyay Gy. (1972) Hydraulic conductivity of salt affected soils in the Hungarian Plain. Agrochemistry and Soil Science 21(1-2) 57-81.

  • [18] Novák T. (2005) Tájváltozások értékelése szikes mintaterületen a talajok és a vegetáció egyes jellemzői alapján [Evaluation of landscape changes of a sample area in the Hortobágy based on soil and vegetation characteristics] PhD thesis. University of Debrecen Faculty of Sciences Department of Landscape Protection and Environmental Geography Debrecen.

  • [19] Hengl T. de Jesus J. M. MacMillan R. A. Batjes N. H. Heuvelink G. B. Ribeiro E. Samuel-Rosa A. Kempen B. Leenaars J. G. B. Walsh M. G. Gonzalez M. R. (2014) SoilGrids1km-global soil information based on automated mapping. PLoS One 9(8).

  • [20] ISRIC - World Soil Information (2019): SoilGrids: an automated system for global soil mapping. Available for download at: http://soilgrids1km.isric.org.

  • [21] Nelson M. A. Odeh I. O. A. (2009) Digital soil class mapping using legacy soil profile data: a comparison of a genetic algorithm and classification tree approach. Australian Journal of Soil Research 47 632-649.

  • [22] Dobos E. Hengl T. (2009) Soil mapping applications. In: Hengl T. Reuter H. I. (eds) Geomorphometry - concepts software applications [Developments in Soil Science 33] Elsevier 461-479.

  • [23] Food & Agriculture Org. of the United Nations (2006) Guidelines for soil description. Fourth edition Rome. FAO.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 511 268 7
PDF Downloads 174 109 3