Kinetics of the thermal decomposition of pine needles

Open access


A kinetic study of the pyrolysis process of pine needles was examined using a thermogravimetric analyser. The weight loss was measured in nitrogen atmosphere at a purge flow rate of 100 ml/min. The samples were heated over a range of temperature of 19°C–600°C with a heating rate of 10°C/min. The results obtained from the thermal decomposition process indicate that there are three main stages: dehydration, active and passive pyrolysis. The kinetic parameters for the different samples, such as activation energy and pre-exponential factor, are obtained by the shrinking core model (reaction-controlled regime), the model-free, and the first-order model. Experimental results showed that the shrinking model is in good agreement and can be successfully used to understand degradation mechanism of loose biomass. The result obtained from the reaction-controlled regime represented actual values of kinetic parameters which are the same for the whole pyrolysis process; whereas the model-free method presented apparent values of kinetic parameters, as they are dependent on the unknown function ϕ(C), on the sum of the parameters of the physical processes, and on the chemical reactions that happen simultaneously during pyrolysis. Experimental results showed that values of kinetic constant from the first-order model and the SCM are in good agreement and can be successfully used to understand the behaviour of loose biomass (pine needles) in the presence of inert atmosphere. Using TGA results, the simulating pyrolysis can be done, with the help of computer software, to achieve a comprehensive detail of the devolatilization process of different types of biomasses.


  • [1] Kala, C., P., (2004), Indigenous uses and structure of chir pine forest in Uttaranchal, Himalaya, India. International Journal of Sustainable & World Ecology 11(2), 205–210.

  • [2] Merila, P., Derome, J. (2008), Relationship between needle nutrient composition in Scots pine and Norway spruce and their respective concentrations in the organic layer and in percolation water. Boreal Env. Research 13 (suppl. B), 35–47.

  • [3] Dhaundiyal, A., Gupta, V. K. (2014), Analysis of pine needles as a substrate for gasification. Journal of Water, Energy and Environment 15, 73–81.

  • [4] Lv, P., Wu, C., Ma, L., Yuan, Z. (2008), A study on the economic efficiency of hydrogen production from biomass residues in china. Renewable Energy 33(1), 1874–1879.

  • [5] Kendry, M. (2002), Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83, 37–46.

  • [6] Szczodrak, J., Fiedurek, J. (1996), Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenergy 49(2), 367–375.

  • [7] White, J. E., Catallo, W. J., Legendra, B. L. (2011), Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis 91(1), 1–33.

  • [8] Ghetti, P., Ricca, L., Angelini, L. (1996), Thermal analysis of biomass and corresponding pyrolysis products. Fuel 75(5), 565–573.

  • [9] Seo, D. K., Park, S. S., Junghoyu, T. U. (2010), Study of the pyrolysis of biomass using thermo-gravimetric analysis (tga) and concentration measurements of the evolved species. Journal of Analytical and Applied Pyrolysis 89(1), 66–73.

  • [10] Giuntoli, J., De Jong, W., Arvelakis, S., Spliethoff, H., Verkooijen, A. H. M. (2009), Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis: dry distiller’s grains with solubles (ddgs) and chicken manure. Journal of Analytical and Applied Pyrolysis 85(1), 301–312.

  • [11] Lapuerta, M., Hernández, J. J., & Rodríguez, J. (2004), Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass and Bioenergy 27(1), 385–91.

  • [12] Zhu, H. M., Yan, J. H., Jiang, X. G., Lai, Y. E., Cen, K. F. (2009), Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model. Journal of Hazardous Materials 162(2), 646–651.

  • [13] Folgueras, M. B., Díaz, R. M., Xiberta J., Prieto, I. (2003), Thermogravimetric analysis of the co-combustion of coal and sewage sludge. Fuel 82, 1051–1055.

  • [14] Otero, M., Calvo, L. F., Gil, M. V., García, A. I., Morán, A. (2008), Combustion of different sewage sludge and coal: a nonisothermal thermogravimetric kinetic analysis. Bioresource Technol 99, 6311–6319.

  • [15] Koreòová, Z., Juma, M., Annus, J., Markoš, J., Jelemenský, L. (2006), Kinetics of pyrolysis and properties of carbon black from a scrap tire. Chemical Papers 60, 422.

  • [16] Stenseng, M., Jensen, A., Dam-Johansen, K. (2001), Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. Journal of Analytical and Applied Pyrolysis 765, 58–59.

  • [17] Di Blasi, C. (2008), First principal modeling of the pyrolysis of a thick biomass slab exposed to thermal radiation: a transient study for tar, char and hydrocarbon formation progress. Energy and combustion science 34(5), 47–90.

  • [18] Aboyade, A. O., Hugo, T. J., Carrier, M., Meyer, E. L., Stahl, R., Knoetze, J. H., Görgens, J. F. (2011), Non-isothermal kinetic analysis of corn cobs and sugar cane bagasse pyrolysis. Thermochimica Acta 517, 81–89.

  • [19] Šimon, P. (2004), Isoconversional methods fundamentals, meaning and application. Journal of Thermal Analysis and Calorimetry 76, 123–132.

  • [20] Nowicki, L., Stolarek, P., Olewski, T., Bedyk, T., Ledakowicz, S. (2008), Mechanism and kinetics of sewage sludge pyrolysis by thermogravimetry and mass spectrometry analysis. Chemical and Process Engineering 29, 813–825.

  • [21] Cetin, E., Moghtaderi, B., Gupta, R., Wall, T. F. (2004), Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83, 2139–2150.

  • [22] Di Blasi, C. (2009), Combustion and gasification rates of lignocellulosic chars, Progr. Energy Comb. Sci. 35, 121–140.

  • [23] Santacesaria, E. (1999), Fundamental chemical kinetics: the first step to reaction modelling and reaction engineering. Catal Today, 113–123.

  • [24] Prakash, N., Karunanithi, T. (2008), Kinetic modeling in biomass pyrolysis. A review. Journal of Applied Sciences Research 4, 1627–1636.

  • [25] Fisher, T., Hajaligol, M., Waymack, B., Kellogg, D. (2002), Pyrolysis behavior and kinetics of biomass derived materials. Journal of Analytical and Applied Pyrolysis 62, 331–349.

  • [26] Kilzer, F. J., Broido, A. (1965), Speculation on the nature of cellulose pyrolysis. Pyrodynamics 2, 151–163.

  • [27] Antal, M. J., Jr., Varhegyi, G. (1995), Cellulose pyrolysis kinetics: the current state of knowledge. Industrial and Engineering Chemistry Research 34, 703–717.

  • [28] Varhegyi, G., Antal, M. J., Jr., Jakab, E., Szabo, P. (1997), Kinetic modeling of biomass pyrolysis. Journal of Analytical Pyrolysis 42, 73–87.

  • [29] Varhegyi, G., Jakab, E., Antal, M. J. (1994), Is the broido–shafizadeh model for cellulose pyrolysis true? Energy & Fuels 8, 1345–1352.

  • [30] Banyasz, J. L., Li, S., Lyons-Hart, J., Shafer, K. H. (2001a), Cellulose pyrolysis: the kinetics of hydroxyacetaldehyde evolution. Journal of Analytical and Applied Pyrolysis 57(2), 223–248.

  • [31] Li, S., Lyons-Hart, J., Banyasz, J. L., Shafer, K. H. (2001), Real-time evolved gas analysis by FTIR method: an experimental Study of cellulose pyrolysis. Fuel 80, 1809–1817.

  • [32] Mamleev, V., Bourbigot, S., Yvon, J. (2007), Kinetic analysis of the thermal decomposition of cellulose: the change of the Rate limitation. Journal of Analytical and Applied Pyrolysis 80, 141–150.

  • [33] Broido, A., Weinstein, M. (1972), Low temperature isothermal pyrolysis of cellulose. Thermal analysis, 285–296.

  • [34] Bradburry, A. G. W., Sakai, Y., Shafizadeh, F. (1979), A kinetic model for pyrolysis of cellulose. Journal of Applied Polymer Science 23, 3271–3280.

  • [35] Vyazovkin, S., Dollimore, D. (1996), Linear and nonlinear procedures in isoconversional computations of the activation. Energy of nonisothermal reactions in solids. Journal of Chemical Information and Modeling 36, 42–45.

  • [36] Flynn, J. H. (1997), The 'temperature integral' – its use and abuse. Thermochimica Acta 300, 83–92.

  • [37] Friedman, H. L. (1964), Kinetics of thermal degradation of charforming plastics from thermogravimetry. Application to a Phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia 6, 183–195.

  • [38] Vyazovkin, S., Burnham, A. K., Criado, J. M., Perez-Maqueda, L. A., Popescu, C., Sbirrazzuoli, N. (2011), ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 520, 1–19.

  • [39] Brown, M. E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A., Opfermann, J., Strey, R., Anderson, H. L., Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H. O., Li, C. R., Tang, T. B., Roduit, B., Malek, J., Mitsuhashi, T. (2000), Computational aspects of kinetic analysis: part a: the ICTAC kinetics project-data, methods and results. Thermochimica Acta 355, 125–143.

  • [40] Yagi, S., Kunii, D. (1955), In: Proc. 5th Int. Symp. On combustion. Journal of Analytical and Applied Pyrolysis 42.

  • [41] Sohn, H. Y., Wadsworth, M. E. (1979), Rate processes of extractive metallurgy. Plenum press, New York.

  • [42] Levenspiel, O. (1972), Fluid-particle reactions. In: chemical reaction engineering, 2nd ed. pp. 357–400. John Wiley &Sons, Singapore.

  • [43] Szekely J., Ewans, J. W., Sohn H. I. (1976), Gas-solid reactions. New York: Academic Press.

  • [44] Vallet, P. (1961), Tables numkriques permettant l'integration des constantes de francais, anglais, espagnol). Vitesse par rapport a la temperature (texte trilingue: Gauthier-Villars, Paris).

  • [45] Hollagh, A. R. E., Alamdari, E. K., Moradkhani, D., Salardini A. A. (2013), Kinetic analysis of isothermal leaching of zinc from zinc plant residue. International Journal of Nonferrous Metallurgy 2, 10–20.

  • [46] Gašparovič, L., Koreňová, Z., Jelemenský, L. (2009), Kinetic study of wood chips decomposition, 36th International conference of SSCHE, May 2529.

  • [47] Bedyk, T., Nowicki, L., Stolarek, P., Ledakowicz, S. (2009), Effect of cao and dolomite additive in the thermal decomposition of sewage sludge in an inert atmosphere. J. Residuals Sci. Technol. 6(1), 3–10.

  • [48] Milosavljevic, I., Suuberg, E. M. (1995), Cellulose thermal decomposition kinetics: global mass loss kinetics. Ind. Eng. Chem. Res 34, 1081–1091.

  • [49] Bilbao, R., Mastral, J. F., Aldea, M. E., Ceamanos, J. (1997), Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere. J. Anal. Appl. Pyrol. 39, 53–64.

  • [50] Baker, R. R. (1978), Kinetic parameters from the non-isothermal decomposition of a multi-component solid. Thermochim Acta 23(2), 201–212.

  • [51] Encinar, J. M., Gonzalez, J. F., Gonzalez, J. (2000), Fixed-bed pyrolysis of cynara cardunculus l. Product yields and compositions fuel process. Technol 68, 209–222.

  • [52] Shafizadeh, F. (1982), Introduction to pyrolysis of biomass. J. Anal. Appl. Pyrolysis 3, 283–305.

  • [53] Zanzi, R. (2001), Pyrolysis of biomass, dissertation, royal institute of technology, department of chemical engineering and technology, Stockholm.

  • [54] Zanzi, R., Sjosyrom, K., Bjombom E. (2002), Rapid pyrolysis of agricultural residues at high temperature. Biomass Bioenergy 23(5), 356–366.

  • [55] Steve Aston, Stefan Doerr, Alayne Street-P. (2013), The impacts of pyrolysis temperature and feedstock type on biochar properties and the effects of biochar application on the properties of a sandy loam. Geophysical Research Abstracts, vol. 15, EGU2013-11083, Egu General Assembly 2013.

  • [56] Gustsfsoon, C., Richards, T. (2009), Pyrolysis kinetics of washed precipitated lignin. Bio resources 4(1), 26–37.

  • [57] Caballero, J. A., Font, R., Marcilla, A. (1996), Study of primary pyrolysis of kraft lignin at high heating rates: yields and kinetics. Journal of Analytical and Applied Pyrolysis 36(2), 159–178.

  • [58] Lee, C. K., Chaiken R. F., Singer, J. M. (1976), Charring pyrolysis of wood in fires by laser simulation. 16th Symposium (Intl.) on Combustion, Combustion Institute, Pitts, pp. 1459–1470.

  • [59] Lopez Pasquali, C. E., Herrera, H. (1997), Pyrolysis of ligin and ir analysis of residues. Thermochimica Acta 293(1–2), 39–46.

  • [60] Vovelle, C., Mellottee, H., Delbourgo, R. (1983), Kinetics of thermal degradation of wood and cellulose by T.G.A. comparison of the calculation techniques. Am. Chem. Soc., Div. Fuel Chem.; (United States); journal volume: 28:5; conference: 186. National meeting of the American Chemical Society, Washington, DC, USA.

  • [61] Órfão, J. J. M., Antunes F. J. A, Figueiredo, J. L. (1999), Pyrolysis kinetics of lignocellulosic materials three independent reactions model. Fuels 78, 349–358.

Acta Universitatis Sapientiae, Agriculture and Environment

The Journal of "Sapientia" Hungarian University of Transylvania

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 19
PDF Downloads 6 6 6