Οƒ-derivations on generalized matrix algebras

Aisha Jabeen 1 , Mohammad Ashraf 2 , Β and Musheer Ahmad 3
  • 1 Department of Applied Sciences & Humanities, Jamia Millia Islamia (A Central University), 110025, New Delhi, India
  • 2 Department of Mathematics, Aligarh Muslim University, 202002, Aligarh, India
  • 3 Department of Applied Sciences & Humanities, Jamia Millia Islamia (A Central University), 110025, New Delhi, India

Abstract

Let 𝒭 be a commutative ring with unity, π’œ, 𝒝 be 𝒭-algebras, 𝒨 be (π’œ, 𝒝)-bimodule and 𝒩 be (𝒝, π’œ)-bimodule. The 𝒭-algebra 𝒒 = 𝒒(π’œ, 𝒨, 𝒩, 𝒝) is a generalized matrix algebra defined by the Morita context (π’œ, 𝒝, 𝒨, 𝒩, ξ𝒨𝒩, Ω𝒩𝒨). In this article, we study Jordan Οƒ-derivations on generalized matrix algebras.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] C. Boboc, S. S. Dascalescu, and L.V. Wyk, Isomorphisms between Morita context rings, Linear Multilinear Algebra. 60 (2012), 545-563.

  • [2] M. BreΕ‘ar, Jordan derivation on semiprime rings, J. Algebra 127 (1989), 218-228.

  • [3] W. S. Cheung, Maps on triangular algebras, Ph.D. dissertation, University of Victoria, 2000.

  • [4] D. Han and F. Wei, Jordan (Ξ±, Ξ²)-derivations on triangular algebras and related mappings, Linear Algebra Appl. 434 (2011), 259-284.

  • [5] I. N. Herstein, Jordan derivation on prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.

  • [6] P. S. Ji and L. Wang, Lie triple derivations on TUHF algebras, Linear Algebra Appl. 403 (2005), 399-408.

  • [7] J. Li and Q. Shen, Characterzations of Lie and Lie triple derivations of triangular algebra, J. Korean Math. Soc. 49 (2012), no. 2, 419-433.

  • [8] Y. B. Li and F. Wei, Semi-centralizing maps of genralized matrix algebras, Linear Algebra Appl. 436 (2012), 1122-1153.

  • [9] Y. B. Li, L. van Wyk, and F. Wei, Jordan derivaitons and antiderivations of genralized matrix algebras, Oper. Matrices 7 (2013), 399-415.

  • [10] F. Y. Lu and W. Jing, Characterizations of Lie derivations of B(X), Linear Algebra Appl. 432 (2010), no. 1, 89-99.

  • [11] F. Ma and G. X. Ji, Generalized Jordan derivations on triangular matrix algebras, Linear Multilinear Algebra 55 (2007), 355-363.

  • [12] W. S. Matindale, Lie derivations of primitive rings, Michigan Math. J. 11 (1964), 183-187.

  • [13] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Rep. Tokyo Kyoiku Diagaku Sect. A 6 (1958), 83-142.

  • [14] A. D. Sands, Radicals and Morita contexts, J. Algebra 24 (1973), 335-345.

  • [15] Z. K. Xiao and F. Wei, Commuting mappings of generalized matrix algebras, Linear Algebra Appl. 433 (2010), 2178-2197.

  • [16] W. Yang and J. Zhu, Characterizations of additive (generalized) ΞΎ -Lie (Ξ±, Ξ²)-derivations on triangular algebras, Linear Multilinear Algebra 61 (2013), 811-830.

OPEN ACCESS

Journal + Issues

The journal is published by Faculty of Mathematics and Computer Science of Ovidius University, Constanta, Romania.

Search