Division hypernear-rings

Open access

Abstract

This paper is a continuation of our work on hypernear-rings with a defect of distributivity D. In particular, here we introduce and study a new subclass of hypernear-rings, called D-division hypernear-rings, establishing a necessary and sufficient condition such that a hypernear-ring with the defect D is a D-division hypernear-ring. Several properties and examples of these two subclasses of hypernear-rings are presented and discussed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] P. Bonansinga Sugli ipergruppi quasicanonici Atti Soc. Peloritana Sci. Fis. Mat. Natur. 27(1981) 9-17.

  • [2] S.D. Comer Polygroups derived from cogroups J. Algebra 89(2) (1984) 397-405.

  • [3] P. Corsini Feebly canonical and 1-hypergroups Acta Univ. Carolin. Math. Phys. 24(1983) 49-56.

  • [4] I. Cristea S. Jančić-Rašović Composition hyperrings An. Univ. “Ovid-ius” Constanta Seria Mat. 21(2) (2013) 81-94.

  • [5] V. Dašić A defect of distributivity of the near-rings Math. Balkanica 8 (1978) 63-75.

  • [6] V. Dašić Some properties of D-distributive near-rings Glas. Mat. Ser. III 18(38) (1983) no. 2 237-242.

  • [7] V. Dašić Hypernear-rings Algebraic hyperstructures and applications (Xanthi 1990) 75-85 World Sci. Publ. Teaneck NJ 1991.

  • [8] B. Davvaz Polygroup theory and related systems World Scientific Publishing Co. Pte. Ltd. Hackensack NJ 2013.

  • [9] L. Dickson Definitions of a group and a field by independent postulates Trans. Amer. Math. Soc. 6 (1905) 198-204.

  • [10] A. Frohlich Distributively generated near-rings (I. Ideal Theory) Proc. London Math. Soc. (3) 8 (1958) 76-94.

  • [11] M. Gontineac On hypernear-rings and H-hypergroups Algebraic hyper-structures and applications (Iaşi 1993) 171-179 Hadronic Press Palm Harbor FL 1994.

  • [12] S. Jančić-Rašović On a class of Chinese hyperrings Italian J. Pure Appl. Math. 28(2011) 243-254.

  • [13] S. Jančić-Rašović On hyperrings associated with binary relations on semihypergroups Italian J. Pure Appl. Math. 30(2013) 279-288.

  • [14] S. Jančić-Rašović I. Cristea Hypernear-rings with a defect of distributivity Filomat 2017 accepted.

  • [15] S. Jančić-Rašović I. Cristea A note on near-rings and hypernear-rings with a defect of distributivity AIP Conference Proceedings 2017 accepted.

  • [16] S. Jančić-Rašović V. Dašić Some new classes of (m n)-hyperrings Filomat 26(3) (2012) 585-596.

  • [17] M. Krasner Approximations des corps values complets de caracteristique p ≠ 0 par ceux de caracteristique 0 Coll. Alg. Sup. (Bruxelles Decembres 1956) CBRM Bruxelles 1957.

  • [18] S. Ligh On distributively generated near-rings Proc. Edinburg Math. Soc. 16 Issue 3 (1969) 239-242.

  • [19] S. Ligh On division near-rings Canadian J. Math. 21(1969) 1366-1371.

  • [20] Ch.G. Massouros Quasicanonical hypergroups Algebraic hyperstructures and applications (Xanthi 1990) 129-136 World Sci. Publ. Tea-neck NJ 1991.

  • [21] Ch.G. Massouros Methods of constructing hyperfields Internat. J. Math. Math. Sci. 8(1985) no.4 725-728.

  • [22] J. Mittas Hypergroupes canoniques Math. Balkanica 2 (1972) 165-179.

  • [23] J. Mittas Sur certaines classes de structures hypercompositionelles Proc. Acad. Athens 48(1973) 298-318.

  • [24] A. Nakasis Recent results in hyperring and hyperfield theory Internat. J. Math. Math. Sci. 11(2) (1988) 209-220.

  • [25] B.H. Neumann On the commutativity of addition J. London Math. Soc. 15(1940) 203-208.

  • [26] G. Pilz Near-rings North-Holland Publ.Co. rev.ed. 1983.

  • [27] R. Rota Multiplicative hyperrings (Italian) Rend. Mat. (7) 2(1982) no.4 711-724.

  • [28] R.L. Roth Character and conjugacy class hypergroups of a finite group Ann. Math. Pura Appl. 105(1975) 295-311.

  • [29] Th. Vougiouklis On some representations of hypergroups Annales scientifiques de l’Université de Clermont-Ferrand 2 tome 95 série Mathematiques 26(1990) 21-29.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0.638
5-year IMPACT FACTOR: 0.58

CiteScore 2018: 0.55

SCImago Journal Rank (SJR) 2018: 0.254
Source Normalized Impact per Paper (SNIP) 2018: 0.583

Mathematical Citation Quotient (MCQ) 2018: 0.19

Target audience:

researchers in all fields of pure and applied mathematics

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 133 6
PDF Downloads 68 68 0