Optimal Control of a Stefan Problem Fully Coupled with Incompressible Navier-Stokes Equations and Mesh Movement

Open access


The optimal control of moving boundary problems receives growing attention in science and technology. We consider the so called two-phase Stefan problem that models a solid and a liquid phase separated by a moving interface. The Stefan problem is coupled with incompressible Navier{Stokes equations. We take a sharp interface model approach and define a quadratic tracking-type cost functional that penalizes the deviation of the interface from the desired state and the control costs. With the formal Lagrange approach and an adjoint system we derive the gradient of the cost functional. The derived formulations can be used to achieve a desired interface position. Among others, we address how to handle the weak discontinuity of the temperature along the interface with mesh movement methods in a finite element framework.

[1] M. S. Alnses, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells. The FEniCS project version 1.5. Archive of Numerical Software, 3(100), 2015.

[2] E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt. Riccati-based boundary feedback stabilization of incompressible Navier-Stokes ows. SIAM J. Sci. Comput., 37(2):A832{A858, 2015.

[3] E. Bänsch, J. Paul, and A. Schmidt. An ALE FEM for solid-liquid phase transitions with free melt surface. Berichte aus der Technomathematik 10-07, 2010.

[4] E. Bänsch, J. Paul, and A. Schmidt. An ALE finite element method for a coupled Stefan problem and Navier-Stokes equations with free capillary surface. International Journal for Numerical Methods in Fluids, 71(10):1282{1296, 2013.

[5] B. Baran. Optimal control of a Stefan problem with gradient-based methods in FEniCS. Master's thesis, Otto-von-Guericke-Universität, Magdeburg, Germany, 2016. http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-7871.

[6] P. Benner and J. Heiland. LQG-balanced truncation low-order controller for stabilization of laminar ows. In R. King, editor, Active Flow and Combustion Control 2014, volume 127 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 365379. Springer International Publishing, 2015.

[7] M. Bernauer. Motion Planning for the Two-Phase Stefan Problem in Level Set Formulation. PhD thesis, Technische Universität Chemmitz, Chemnitz, Germany, 2010.

[8] R. Glowinski. Finite element methods for the numerical simulation of incompressible viscous ow. Introduction to the control of the Navier-Stokes equations. Lectures in Applied Mathematics 28 (1991): 219-301, 1991.

[9] M. Hinze and K. Kunisch. Second order methods for optimal control of time-dependent uid ow. SIAM J. Cont. Optim., 40(3):925{946, 2001.

[10] M. Hinze and S. Ziegenbalg. Optimal control of the free boundary in a two-phase Stefan problem with ow driven by convection. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 87(6):430{448, 2007.

[11] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python. http://www.scipy.org/, 2001-.

[12] R. H. Nochetto, M. Paolini, and C. Verdi. An adaptive finite element method for two-phase Stefan problems in two space dimensions. I: Stability and error estimates. Mathematics of Computation, 57(195):73-108, 1991.

[13] R. H. Nochetto, M. Paolini, and C. Verdi. An adaptive finite element method for two-phase Stefan problems in two space dimensions. II: Implementation and numerical experiments. SIAM J. Sci. Statist. Comput., 12(5):1207{1244, 1991.

[14] P. Rudolph and M. Jurisch. Bulk growth of GaAs an overview. Journal of Crystal Growth, 198{199, Part 1:325{335, 1999.

[15] Stichting Mathematisch Centrum, Amsterdam, The Netherlands. Python. http://www.python.org, 1991-1995.

[16] F. Tröltzsch. Optimal Control of Partial Di erential Equations - Theory, Methods and Applications. Graduate Studies in Mathematics, Vol. 112. American Mathematical Society, Providence, Rhode Island, 2010. (Translation of the second German edition below by J. Sprekels).

[17] P. N. Vabishchevich. Computational Technologies. Advanced Topics. Walter de Gruyter GmbH & Co. KG, 2014.

[18] R. E. White. An enthalpty formulation of the Stefan problem. SIAM J. Numer. Anal., 19(6):1129{1157, 1982.

Analele Universitatii "Ovidius" Constanta - Seria Matematica

The Journal of "Ovidius" University of Constanta

Journal Information

IMPACT FACTOR 2017: 0.452
5-year IMPACT FACTOR: 0.512

CiteScore 2017: 0.59

SCImago Journal Rank (SJR) 2017: 0.316
Source Normalized Impact per Paper (SNIP) 2017: 0.790

Mathematical Citation Quotient (MCQ) 2016: 0.10

Target Group

researchers in all fields of pure and applied mathematics


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 65 7
PDF Downloads 60 60 5