Weighted Entropic Copula from Preliminary Knowledge of Dependence

Open access

Abstract

This paper introduces a weighted entropic copula from preliminary knowledge of dependence. Considering a copula with common distribution we formulate the weighted entropy dependence model (WMEC). We give an approximator for the copula function of this problem. Also, we discuss some asymptotical properties regarding the unknown parameters of the model.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Barbu V.Sfi. Karagrigoriou A. Preda V. (2017) Entropy and divergence rates for Markov chains: I. The Alpha-Gamma and Beta-Gamma case Proceedings of the Romanian Academy-series A vol 4- to appear

  • [2] Barbu V.Sfi. Karagrigoriou A. Preda V. (2018) Entropy and divergence rates for Markov chains: II. The weighted case Proceedings of the Ro- manian Academy-series A vol 1- to appear

  • [3] Barbu V.Sfi. Karagrigoriou A. Preda V. (2018) Entropy and divergence rates for Markov chains: III. The Cressie and Read case and applications Proceedings of the Romanian Academy-series A vol 2- to appear

  • [4] Bălcău C. Constantin D. Panait I. Ioana Some bounds for the weighted cumulative paired interval entropy International Journal of Risk Theory Vol 7 (no.2) 2017

  • [5] Băncescu I. Comparing the expected system lifetimes of k-out-of-m sys- tems using transmuted-G distributions Proceedings of the Romanian Academy- to appear (2017).

  • [6] Belis M. Guiaşu S. 1968. A quantitative-qualitative measure of informa- tion in cybernetic systems. IEEE Transcations on Information Theory 14 593-594

  • [7] Berger A. L. Della Pietra V. J. Della Pietra S. A. "A maximum en- tropy approach to natural language processing" Journal Computational Linguistics Volume 22 Issue 1 1996 Pages 39-71

  • [8] Cherubini U. Luciano E. Vecchiato W. 2004. Copula Methods in Fi- nance. John Wiley & Sons New York

  • [9] B. Chu 2011. Recovering copulas from limited information and an appli- cation to asset allocation. J. Bank. Financ. 35 1824-1842.

  • [10] B. Chu S. Satchell 2016 Recovering the Most Entropic Copulas from Preliminary Knowledge of Dependence Econometrics 4 20 doi:

    • Crossref
    • Export Citation
  • [11] T. Cover J. Thomas 1991. Elementary of Information Theory; Wiley: New York NY USA.

  • [12] Chollete L. Heinen A. Valdesogo A. Modelling international financial returns with a multivariate regime-switching copula J. Financ. Econom. 2009 7 437-480

  • [13] D. Dănciulescu 2015. Formal Languages Generation in Systems of Knowl- edge Representation based on Stratified Graphs Informatica vol. 26 no. 3 pp. 407-417.

  • [14] M.A.H. Dempster E.A. Medova S.W. Yang 2007. Empirical copulas for cdo tranche pricing using relative entropy. Int. J. Theor. Appl. Financ 10 679-701.

  • [15] Embrechts P. Lindskog F. McNeil A.J. 2003. Modelling dependence with copulas and applications to risk management in: Rachev S.T. (Ed.) Handbook of Heavy Tailed Distribution in Finance. Elsevier North- Holland Amserdam. chapter 8 pp. 329-384.

  • [16] S. Guiaşu 1971. Weighted entropy. Reports on Mathematical Physics 2 (3) 165-179

  • [17] G. Grigoraş D. Dănciulescu A. Bandoi 2011. Hierarchically identifica- tion. Recent Researches in Tourism and Economic Development 511-513. In Proceedings of the 1st International Conference on Tourism and Eco- nomic Development (TED 2011) Drobeta Turnu Severin Romania Oc- tober 2011.

  • [18] Hao Z. Singh V.P. 2013. Modeling multi-site streamow de- pendence with maximum entropy copula. Water Resour. Res. 49 doi:

    • Crossref
    • Export Citation
  • [19] Iofie A.D. Tihomirov V.M. Theory of Extremal Problems; Lions J.L. Papanocolalaou G. Rockafellar R.T. Eds.; Studies in mathematics and its applications; North Holland Publishing Company: Amsterdam The Netherlands; New York NY USA; Oxford UK 1979; Volume 6.

  • [20] Jaynes E.T. (1957) "Information theory and statistical mechanics" I. Physical Review 106 620–630

  • [21] J. Kapur 1989. Maximum-Entropy Models in Science and Engineering; Wiley: New York NY USA.

  • [22] Kolve N. dos Anjos U. Mendes B. 2006. Copulas: a review and recent developments. Stochastic Models 22 617-660.

  • [23] Kutoyants Y.A 2004. Statistical Inference for Ergodic Diffusion Pro- cesses; Springer series in statistics; Springer-Verlag: London UK; Berlin Heidelberg Germany.

  • [24] Mikosch T. 2006. Copulas: tales and facts. Extremes 9 3-20.

  • [25] R.B. Nelsen 2006. An Introduction to Copulas; Springer: New York NY USA.

  • [26] Ning C. Xu D. Wirjanto T.S. Is volatility clustering of asset returns asymmetric? J. Bank. Financ. 2015 52 62-76

  • [27] Preda V. Băncescu I. (2016) A new family of distributions with a gen eral generic distribution for reliability studies. Log-concavity and Appli cation International Journal of Risk Theory Alexandru Myller Publish ing Iasi 1(6) 13-38

  • [28] V. Preda S.Dedu C. Gheorghe New classes of Lorenz curves by maxi- mizing Tsallis entropy under mean and Gini equality and inequality con- straints Physica A 436 925-932 (2015)

  • [29] Vasile Preda Costel Bălcău Entropy optimization with applications Ed- itura Academiei Române Bucureşti 2010

  • [30] V. Preda C. Bălcău I.I. Panait 2017. A weighted cumulative paired interval entropy. Submitted.

  • [31] Rodriquez J.C. Measuring financial contagion: A copula approach. J. Empir. Financ. 2007 14 401-423

  • [32] A. Sklar 1959. Fonctions de repartition a n dimensions et leurs marges Publ. Inst. Statist. Univ. Paris 8: 229-231

  • [33] Soares Abner D. Newton J. Moura Jr and Marcelo B. Ribeiro. "Tsallis statistics in the income distribution of Brazil." Chaos Solitons & Fractals 88 (2016): 158-171.

  • [34] Tsallis C. (1988) Possible generalizations of Boltzmann-Gibbs statistics Journal of Statistical Physics 52 479–487

  • [35] Tsallis C. (1998) On the fractal dimension of orbits compatible with Tsallis statistics Physical Review E58 1442–1445

  • [36] Tsallis C. (2002) Entropic nonextensivity: A possible measure of com- plexity Chaos Solitons and Fractals 12 371–391

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0.638
5-year IMPACT FACTOR: 0.58

CiteScore 2018: 0.55

SCImago Journal Rank (SJR) 2018: 0.254
Source Normalized Impact per Paper (SNIP) 2018: 0.583

Mathematical Citation Quotient (MCQ) 2018: 0.19

Target audience:

researchers in all fields of pure and applied mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 229 132 10
PDF Downloads 102 67 3