Exact Formula for Computing the Hyper-Wiener Index on Rows of Unit Cells of the Face-Centred Cubic Lattice

Open access

Abstract

Similarly to Wiener index, hyper-Wiener index of a connected graph is a widely applied topological index measuring the compactness of the structure described by the given graph. Hyper-Wiener index is the sum of the distances plus the squares of distances between all unordered pairs of vertices of a graph. These indices are used for predicting physicochemical properties of organic compounds. In this paper, the graphs of lines of unit cells of the face-centred cubic lattice are investigated. The graphs of face-centred cubic lattice contain cube points and face centres. Using mathematical induction, closed formulae are obtained to calculate the sum of distances between pairs of cube points, between face centres and between cube points and face centres. The sum of these formulae gives the hyper-Wiener index of graphs representing face-centred cubic grid with unit cells connected in a row. In connection to integer sequences, a recurrence relation is presented based on binomial coefficients.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. Al-Kandari P. Manuel and I. Rajasingh Wiener index of sodium chloride and benzenoid structures The Journal of Combinatorial Mathe- matics and Combinatorial Computing 97 (2011) 33-42.

  • [2] B. Bogdanov S. Nikolić and N. Trinajstić On the three-dimensional Wiener number Journal of Mathematical Chemistry 3 (1989) 299-309.

  • [3] B. Bollobfias Graph theory. an introductory course Springer-Verlag New York 1979.

  • [4] G. Cash S. Klavzar and M. Petkovsek Three methods for calculation of the hyper-Wiener index of molecular graphs J. Chem. Inf. Comput. Sci. 42 (2002) 571-576.

  • [5] C. R. A. Catlow Modelling and predicting crystal structures Interdisci- plinary Science Reviews 40 (2015) no. 3 294-307.

  • [6] J. H. Conway and N. J. A. Sloane Sphere packings lattices and groups 2nd ed Springer-Verlag New York 1993.

  • [7] K. Ch. Das N. Akgunes M. Togan A. Yurttas I. N. Cangul and A. S. Cevik On the first Zagreb index and multiplicative Zagreb coindices of graphs An. Sfitiintfi. Univ. \Ovidius" Constantfia Ser. Mat. 24 (2016) no. 1 153-176.

  • [8] A. A. Dobrynin I. Gutman S. Klavzar and P. Zigert Wiener index of hexagonal systems Acta Applicandae Mathematicae 72 (2002) 247-294.

  • [9] S. Klavzar and I. Gutman Wiener number of vertex-weighted graphs and a chemical application Discrete Applied Mathematics 80 (1995) 73-81.

  • [10] S. Klavzar P. Zigerta and I. Gutman An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons Computers and Chem- istry 24 (2000) 229-233.

  • [11] D. J. Klein I. Lukovits and I. Gutman On the definition of the hyper- Wiener index for cycle-containing structures J. Chem. Inf. Comput. Sci. 35 (1995) 50-52.

  • [12] R. Klette and A. Rosenfeld Digital geometry geometric methods for dig- ital picture analysis Morgan Kaufmann 2004.

  • [13] P. Krishna and A. R. Verma Closed packed structures International Union of Crystallography Chester UK 1981.

  • [14] P. Manuel I. Rajasingh and M. Arockiaraj Wiener and Szeged in- dices of regular tessellations International Conference on Information and Network Technology (ICINT 2012) IPCSIT 37 IACSIT PressSingapore (2012).

  • [15] H. Mujahed and B. Nagy Wiener index on rows of unit cells of the face- centred cubic lattice Acta Crystallographica Section A: Foundations and Advances A72 (2016) 243-249.

  • [16] B. Nagy and R. Strand Non-traditional grids embedded in Zn Interna- tional Journal of Shape Modeling 47 (2008) 209-228.

  • [17] R. H. Petrucci W. S. Harwood F. G. Herring and J. D. Madura General chemistry: Principles and modern applications. ninth edition Pearson Education Inc.g New Jersey 2007.

  • [18] M. Randic Novel molecular descriptor for structure-property studies Chemical Physics Letters 211 (1993) 478-483.

  • [19] N. J. A. Sloane (ed.) The On-Line Encyclopedia of Integer Sequences published electronically at https://oeis.org time of access: 04.04.2017

  • [20] R. Strand and B. Nagy Distances based on neighbourhood sequences in non-standard three-dimensional grids Discrete Applied Mathematics 155 (2007) 548-557.

  • [21] R. Strand and B. Nagy Path-based distance functions in n-dimensional generalizations of the face-and body-centered cubic grids Discrete Applied Mathematics 157 (2009) 3386-3400.

  • [22] R. Strand B. Nagy and G. Borgefors Digital distance functions on three- dimensional grids Theoretical Computer Science 412 (2011) 1350-1363.

  • [23] H. Wiener Structural determination of parafin boiling points Journal of American Chemical Society 69 (1947) 17-20.

  • [24] R. Xing B. Zhou and X. Qi HyperWiener index of unicyclic graphs MATCH Communications in Mathematical and in Computer Chemistry 66 (2011) 315-328.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0.638
5-year IMPACT FACTOR: 0.58

CiteScore 2018: 0.55

SCImago Journal Rank (SJR) 2018: 0.254
Source Normalized Impact per Paper (SNIP) 2018: 0.583

Mathematical Citation Quotient (MCQ) 2018: 0.19

Target audience:

researchers in all fields of pure and applied mathematics

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 325 188 6
PDF Downloads 146 88 1