A new proof of the bound for the first Dirichlet eigenvalue of the Laplacian operator

Open access


In this paper, we present a new proof of the upper and lower bound estimates for the first Dirichlet eigenvalue λ1D(B(p,r)) of Laplacian operator for the manifold with Ricci curvature Rc−K, by using Li-Yau’s gradient estimate for the heat equation.

[1] S. Y. Cheng, Eigenvalue comparison and its geometric application, Math. Z. 143 (1975), 289-297.

[2] B. Chow, P. Lu, L. Ni, Hamilton’s Ricci Flow. Lectures in Contemporary Mathematics, 3, Science Press and Graduate Studies in Mathematics, 77, American Mathematical Society (co-publication), 2006.

[3] P. Li and S. T. Yau, Eigenvalues of a compact Riemannian manifold, AMS Proc. Symp. Pure Math. 36 (1980), 205-239.

[4] R. Schoen and S. T. Yau, Lectures on di erential geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA, 1994.

[5] J. Q. Zhong and H. C. Yang, On the estimate of first eigenvalue of a compact Riemannian manifold, Sci. Sinica Ser. A 27 (1984), 1265-1273.

Analele Universitatii "Ovidius" Constanta - Seria Matematica

The Journal of "Ovidius" University of Constanta

Journal Information

IMPACT FACTOR 2017: 0.452
5-year IMPACT FACTOR: 0.512

CiteScore 2018: 0.55

SCImago Journal Rank (SJR) 2018: 0.254
Source Normalized Impact per Paper (SNIP) 2018: 0.583

Mathematical Citation Quotient (MCQ) 2016: 0.10

Target Group

researchers in all fields of pure and applied mathematics


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 134 92 12
PDF Downloads 46 40 5