Attachment observability of a rotating body-beam

Open access

Abstract

In this article we analyze the admissibility and the exact observability of a body-beam system when the output is taken in a point of attachment from the beam to the body. The single output case chosen here is the practical measurement of the strength, its velocity or its moment. We prove the exact observability for the moment and the admissibility for the other cases. These results are obtained by the spectral properties of rotating body beam system operator and Ingham's inequalities.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] B. D’Andrea - Novel and J. M. Coron Stabilization of a rotating body- beam without damping IEEE Transaction Automatic Control 43 (1998) no.5 608 - 618.

  • [2] J. Bailleul and M. Levi Rotational elastic dynamics Physica D 27 (1987) 43 - 62.

  • [3] A. Bensoussan G. D. Prato M. Delfour and S.K. Mitter Representation and control of infinite-dimensional systems Vol. I Birkhauser Boston Inc. Boston MA 1992.

  • [4] A.M. Bloch and E. S. Titi On the dynamics of rotating elastic beams Proceedings Conf. New Trends Syst. theory Genoa Italy July 9-11 1990 Conte Perdon and Wyman (Eds.) Birkauser Cambridge 1990.

  • [5] H. Brezis Analyse fonctionnelle theorie et applications Masson Paris 1983.

  • [6] B. Chentouf and J. F. Couchouron Nonlinear feedback stabilization of a rotating body-beam system ESAIM: Control Optimization and Calculus of Variations 4(1999) 515 - 535.

  • [7] R. F. Curtain and H. Zwart An introduction to Infinite-Dimensional Linear Systems Theory Texts Applied Math. 21 Springer-Verlag New York 1995

  • [8] J. Deguenon Observateurs des Systemes Anti-Adjoints de Dimension In- finie et Applications These unique de doctorat Universite de Metz - Metz 2003.

  • [9] A. J. Deguenon G. Sallet and C. Z. Xu A Luenberger observer for infinite dimensional skew-symmetric systems with application to an elastic beam Proc. 2nd Int. Symp on Comm. Control and Signal Marrakech 2006.

  • [10] A. J. Deguenon and A. Barbulescu Theoretical Observers for Infinite Dimensional Skew-Symmetric Systems 2012 submitted

  • [11] C.E. Hmelo-Silver R. Jordan L. Liu S. Gray M. Demeter S. Ru- gaber S. Vattam and S. Goel Focusing on Function: Thinking be­low the Surface of Complex Natural Systems 27- 35

  • [12] A.E. Ingham Some trigonometrical inequalities with applications to the theory of series Math. Zeischrift 41(1936) 367 - 379.

  • [13] A. El Jai and A.J. Pritchard Capteurs et actionneurs dans l’analyse des systemes distribues Recherche en Mathematiques Appliquees Masson 1986.

  • [14] H. Laousy C.Z. Xu and G. Sallet Boundary feedback stabilization of a rotating body-beam system IEEE Transaction Automatic Control 41 (1996) no.2 241 - 245.

  • [15] X.-D. Li C.-Z. Xu Y.-J. Peng and M. Tucsnak On the numerical in­vestigation of a Luenberger type observer for infinite-dimensional vibrat­ing systems Proceedings of the 17th World Congress The International Federation of Automatic Control (IFAC) Seoul Korea July 6-11 2008 7264-7269.

  • [16] L. Marsavina A. D. Nurse L. Braescu and E.M. Craciun Stress singu­larity of symmetric free-edge joints with elasto-plastic behaviour Comp. Mat. Sci. 52 (2012) No.1 231-235.

  • [17] A. Pazy Semigroups of linear operators and applications to partial dif­ferential equations Springer Verlag New York 1983.

  • [18] T. W. Peterson

  • [19] D. L. Russell and G. Weiss A general necessary conditions for exact observability SIAM J. Control and Optimizations 32 (1994) no.1 1 - 23.

  • [20] R. Selescu and A. Barbulescu The bending of the nonprismatic bars with constant section and the inertia moment variable periodic Bull. Sci. Pitesti Univ. Mathematics and Informatics 2 (1998) 209 - 222.

  • [21] J. Weidmann Linear Operators in Hilbert Spaces Springer-Verlag Berlin 1980.

  • [22] C. Z. Xu and J. Bailleul Stabilizability and stabilization of a rotating body beam system with torque control IEEE Transaction Automatic Control 38 (1993) no.12 1754 - 1765.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0.638
5-year IMPACT FACTOR: 0.58

CiteScore 2018: 0.55

SCImago Journal Rank (SJR) 2018: 0.254
Source Normalized Impact per Paper (SNIP) 2018: 0.583

Mathematical Citation Quotient (MCQ) 2018: 0.19

Target audience:

researchers in all fields of pure and applied mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 127 70 0
PDF Downloads 36 21 0