Electrochemical oxidation of salicylhydroxamic acid on Pt electrode

Open access

Abstract

The electrochemical oxidation behavior of salicylhydroxamic acid (SHAM) on a Pt electrode was investigated in aqueous solution of different pHs, containing 10 mM of SHAM, at 25 °C, by cyclic voltammetry technique. The results indicate that the SHAM was oxidized more easily in alkaline medium than acidic and neutral mediums, and the oxidation peaks of SHAM shifted toward lower potential values by increasing pH values. The SHAM electrooxidation involves an irreversible transfer of one or two electron, depending on the pH of solution. If solution pH is lower than 3 and higher than 7, the two electron transfer is involved in the electrooxidation. While, from pH=3 to pH=7, the SHAM electrooxidation involves an irreversible transfer of one electron and two protons in the first step, in agreement with the one step one-electron mechanism. The effect of SHAM concentration on the electrode reaction was investigated in artificial saliva solution. SHAM gives a single irreversible oxidation wave over the wide concentration range studied. Possible mechanism of SHAM electrooxidation was proposed.

References

  • [1]. C.J. Marmion, D. Griffith, K.B. Nolan, European Journal of Inorganic Chemistry 15, 3003-3016 (2002).

  • [2]. C. Indiani, E. Santoni, M. Becucci, A. Boffi, K. Fukuyama, G. Smulevich, Biochemistry 47, 14066-14074 (2003).

  • [3]. E.C. O’Brien, E. Farkas, M.J. Gil, D. Fitzgerald, A. Castineras, K.B. Nolan, Journal of Inorganic Biochemistry 79, 47-51 (2000).

  • [4]. M. Arnold, D.A. Brown, O. Deeg, W. Errington, W. Haase K. Herlihy, T.J. Kemp, H. Nimir, R. Werner, Inorganic Chemistry 37, 2920-2925 (1998).

  • [5]. E.M.F. Muri, M.J. Nieto, R.D. Sindelar, J.S. Williamson, Current Medicinal Chemistry 9, 1631-1653 (2002).

  • [6]. W.P. Steward, A.L. Thomas, Expert opinion on investigational drugs 9, 2913-2922 (2002).

  • [7]. D. A. Brown, L.P. Cuffe, N. J Fitzpatrick, Á.T. Ryan, Journal of Inorganic Chemistry 43, 297-302 (2003).

  • [8]. P. Reddy, Y. Maeda, K. Hotary, C. Liu, L.L. Reznikov, C.A. Dinarello, J.L.M. Ferrara, Proceedings of the National Academy of Sciences of the United States of America 101, 3921-3926 (2004).

  • [9]. W.O. Foye, H.S. Hong, C.M. Kim, E.L. Prien, Investigative urology 14, 33-37 (1976).

  • [10]. A.A.Salem, M.M. Omar, Turkish Journal of Chemistry 27, 383-393 (2002).

  • [11]. M. Tian, B. Adams, J.L. Wen, R.M. Asmussen, A.C. Chen, Electrochimca Acta 54, 3799–3805 (2009).

  • [12]. Y. Wang, H. Jiang, J.J. Tian, J.B. He, Electrochimica Acta 125, 133–140 (2014).

  • [13]. V. Supalkova, J. Petrek, L. Havel, S. Krizkova, J. Petrlova, V. Adam, D. Potesil, P. Babula, M. Beklova, A. Horna, R. Kizek, Sensors 6, 1483–1497 (2006).

  • [14]. I. Gualandi, E. Scavetta, S. Zappoli, D. Tonelli, Biosens. Bioelectron. 26, 3200–3206 (2011).

  • [15]. K. Kratochvilová, I. Hoskovcová, J. Jirkovský, J. Klíma, J. Ludvík, Electrochimca Acta 40, 2603–2609 (1995).

  • [16]. W.D. Zhang, B. Xu, Y.X. Hong, Y.X. Yu, J.S. Ye, J.Q. Zhang, J. Solid State Electrochemistry 14, 1713–1718 (2010).

  • [17]. J. Xu, X. Zhuang, Talanta 38, 1191–1195 (1991).

  • [18]. J. Li, J. Yu, Q. Lin, Analytical Letter 43, 631–643 (2010).

  • [19]. E. Al Shamaileh, M. Alawi, Y. Dahdal, H. Saadeh, Jordan Journal of Pharmaceutical Sciences 1, 55-64 (2008).

  • [20]. Y. Wang, H. Jiang, J. Tian, J. He, Electrochemica Acta 125, 133-140 (2014).

  • [21]. E. Wudarska, E. Chrzescijanska, E. Kusmierek, J. Rynkowski, Electrochimica Acta 93, 189-194 (2013).

  • [22]. E. Chrzescijanska, E. Wudarska, E. Kusmierek, J. Rynkowski, Journal of Electroanalytical Chemistry 713, 17–21 (2014).

Ovidius University Annals of Chemistry

Analele Universitatii "Ovidius" Constanta - Seria Chimie

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 11
PDF Downloads 2 2 2