Photocatalytic study of organosilane-modified zinc oxide nanoparticles

Open access

Abstract

In our recent studies, we have investigated the tunability of optical properties of zinc oxide nanoparticles (ZnO NPs) through surface modification with organosilane surfactants. In the present paper, the effect of ZnO NPs modified with variable amount of 3-(trimethoxysilyl)propylmethacrylate (MPS) surfactant was investigated toward the photocatalytic degradation of methylene blue (MB), using two different UV light sources emitting at 254 nm and 365 nm. While the maximum photodegradation efficiency of 63% was reached by ZnO NPs loaded with the highest concentration of MPS upon exposure at 254 nm, in the case of UV exposure at 365 nm an opposite photodegradation trend was observed. Actually, a significant photodegradation efficiency of 95% was recorded by the unmodified ZnO, followed by ZnO NPs modified with 2% MPS for which the photodegradation efficiency amounted to 80%, thus highlighting their best photocatalytic performance.

References

  • [1]. M.A. Hood, M. Mari, R. Muñoz-Espí, Materials 7, 4057 (2014).

  • [2]. J. Li and J.Z. Zhang, Coord. Chem. Rev. 253, 3015 (2009).

  • [3]. C.F. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann and J. Geurts, Zinc Oxide From Fundamental Properties Towards Novel Applications, Springer-Verlag, Berlin, 2010.

  • [4]. L. Qian, Y. Zheng, J. Xue and P.H. Holloway, Nature Photonics 5, 543 (2011).

  • [5]. U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J.Cho and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).

  • [6]. J. Mawyin, Y. Shupyk, M. Wang, G. Poize, P. Atienzar, T. Ishwara, J.R. Durrant, J. Nelson, D. Kanehira, N. Yoshimoto, C. Martini, E. Shilova, P. Secondo, H. Brisset, F. Fages and J. Ackermann, J. Phys. Chem. C 115, 10881 (2011).

  • [7]. E. Fortunato, P. Barquinha and R. Martins, Adv. Mater. 24, 2945 (2012).

  • [8]. M. Karimi, J. Saydi, M. Mahmoodi, J. Seidi, M. Ezzati, S. Shamsi Anari and B. Ghasemian, J. Phys. Chem. Solid 74, 1392 (2013).

  • [9]. Y. Martynova, B.-H. Liu, M.E. McBriarty, I.M.N. Groot, M.J. Bedzyk, S. Shaikhutdinov and H.-J. Freund, J. Catal. 301, 227 (2013).

  • [10]. X. Tang, E.S.G. Choo, L. Li, J. Ding and J. Xue, Langmuir 25, 5271 (2009).

  • [11]. M. Busila, V. Musat, T. Textor and B. Mahltig, RSC Adv. 5, 21562 (2015).

  • [12]. D.M. Yebra, S. Kiil, C.E. Weinell and K. Dam-Johansen, Prog. Org. Coat. 56, 327 (2006).

  • [13]. M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev. 95, 69 (1995).

  • [14]. P. Periyat, S.C. Pillai, D.E. McCormack, J. Colreavy and S.J. Hinder, J. Phys. Chem. C 112, 7644 (2008).

  • [15]. S. Funk, B. Hokkanen, U. Burghaus, A. Ghicov and P. Schmuki, Nanoletters 7, 1091 (2007).

  • [16]. T. Zhang, T. Oyama, S. Horikoshi, J. Zhao, N. Serpone and H. Hidaka, Appl. Catal. B: Environ. 42, 13 (2003).

  • [17]. T. Zhang, L. You and Y. Zhang, Dyes Pigments 68, 95 (2006).

  • [18]. J. Emsley, Titanium. Nature’s Building Blocks: An A–Z Guide to the Elements, Oxford University Press, Oxford, England, 2001.

  • [19]. S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan, Sol. Energy Mater. Sol. C 77, 65 (2003).

  • [20]. J.H. Sun, S.Y. Dong, Y.K. Wang and S.P. Sun, J. Hazard. Mater. 172, 1520 (2009).

  • [21]. P.V. Kamat, R. Huehn and R. Nicolaescu, J. Phys. Chem. B 106, 788 (2002).

  • [22]. S.C. Padmanabhan, S.C. Pillai, J. Colreavy, S. Balakrishnan, D.E. McCormack, T.S. Perova, S.J. Hinder and J.M. Kelly, Chem. Mater. 19, 4474 (2007).

  • [23]. J.M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A.R. González-Elipe and A. Fernández, Appl. Catal. B: Environ. 13, 219 (1997).

  • [24]. K. Saoud, R. Alsoubaihi, N. Bensalah, T. Bora, M. Bertino, J. Dutta, Mater. Res. Bull. 63, 134 (2015).

  • [25]. M. Ibanescu (Busila), V. Musat, T. Textor, V. Badilita, B. Mahltig, J. Alloys Compd. 610, 244 (2014).

  • [26]. G. Merga, L.C. Cass, D.M. Chipman and D. Meisel, J. Am. Chem. Soc. 130, 7067 (2008).

  • [27]. V. Musat, A. Tabacaru, B.S. Vasile and V.-A. Surdu, RSC Adv. 4, 63128 (2014).

  • [28]. A. Tabacaru, V. Musat, N. Tigau, B.S. Vasile and V.-A. Surdu, Appl. Surf. Sci., to be published.

  • [29]. A. Tabacaru, V. Musat, R.M. Dinica and C. Gheorghies, Rev. Chim. (Bucharest), to be published.

  • [30]. A.L. Patterson, Phys. Rev. 56, 972 (1939).

  • [31]. H.P. Klug and L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, Wiley, New York, 1974.

  • [32]. Powder Diffract. File, JCPDSB Internat. Centre Diffract. Data, PA 19073–3273, U.S.A. (2001).

  • [33]. K.J. Klabunde (Ed.), Nanoscale Materials in Chemistry, John Wiley & Sons, Inc., USA, 2002.

  • [34]. W.S. Chiu, P.S. Khiew, M. Cloke, D. Isa, T.K. Tan, S. Radiman, R. Abd-Shukor, M.A. Abd. Hamid, N.M. Huang, H.N. Limd and C.H. Chia, Chem. Eng. J. 158, 345 (2010).

  • [35]. M. (Busila) Ibanescu, V. Musat, T. Textor, V. Badilita, B. Mahltig, The Annals of “Dunarea de Jos” of Galati, Fascicle IX, Metallurgy and Materials Science 2, 54 (2013).

  • [36]. R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng and J. Ding, Powder Technology 189, 426 (2009).

Ovidius University Annals of Chemistry

Analele Universitatii "Ovidius" Constanta - Seria Chimie

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 2 2 2