Estimation of the refractive index of diesel fuel+biodiesel blends

Open access

Abstract

For now, biodiesel is the commonly accepted biofuel as a substitute for diesel fuel in internal combustion engines. Diesel fuel blends with up to 20% biodiesel can be used in diesel engines without any modification. A lot of studies regarding diesel fuel+biodiesel blends properties are presented in the literature. Some of the important properties of diesel fuel+biodiesel blends can be evaluated from other blends properties. For example, density and viscosity of biodiesel blends can be predicted based on blend refractive index. More than that, refractive index can be used as a reliable physical property to predict transesterification reaction progress. As a result, the refractive index of diesel fuel+biodiesel blends is important in order to characterize these blends or to monitor the evolution of transesterification process of vegetable oils or animal fats. The refractive index of diesel fuel+biodiesel blends can be experimentally determined or evaluated based on refractive indices of diesel fuel and biodiesel. The aim of this study was to estimate the accuracy of refractive index of diesel fuel +biodiesel blends calculation, using models initially proposed to evaluate the refractive index of a binary liquid mixture. It was shown that the refractive index of diesel fuel+biodiesel blends can be accurately predicted from refractive indices of the components of the blend. Wiener, Heller and Edward equations can be recommended to predict with a great accuracy the refractive index of diesel fuel+biodiesel blends.

References
  • [1] M. E. Tat and J. H. Van Gerpen, JAOCS 76, 1511 (1999).

  • [2] M. Tate and J. Garpen, JAOCS 77(2), 115 (2000).

  • [3] G. Knothe and K. R. Steidleys, Fuel 84, 1059 (2005).

  • [4] G. Knothe, Fuel Proc Technol 86, 1059 (2005).

  • [5] R.M. Joshi and M.J. Pegg, Fuel 86, 143 (2007).

  • [6] C.J. Ejim, B.A. Fleck and A. Amirfazli, Fuel 86, 1534 (2007).

  • [7] P. Benjumea, J. Agudelo and A. Agudelo , Fuel 87, 2069 (2008).

  • [8] A. Demirbas, Fuel 87, 1743 (2008).

  • [9] E. Alptekin and M. Canakci, Renewable Energy 33, 2623 (2008).

  • [10] W. Yuan, W. Hansen and A.C. Zhang, Fuel 88(6), 1120 (2009).

  • [11] I. Nita and D. Mandalopol, Env Eng Manag J 8(4), 639, (2009).

  • [12] K. Krisnangkura, C. Sansa-ard, K. Aryusuk, S. Lilitchan and K. Kittiratanapiboon, Fuel 89, 2775 (2010).

  • [13] K. Anand, R.P. Sharma, S. Pramod and S. Mehta, Appl Thermal Eng 31, 235 (2011).

  • [14] I. Nita, S. Geacai, Ovidius Univ. Annals of Chemistry, 23(1), 58 (2012).

  • [15] I. Nita, S. Geacai and O. Iulian, Renewable Energy 36, 3417, (2011).

  • [16] R. Ghanei, G.R. Moradi, R. Taherpour Kalantari and E. Arjmandzadeh, Fuel Processing Technology 92, 1593 (2011).

  • [17] S. Geacai, I. Nita, O. Iulian and E. Geacai, U.P.B. Sci Bull 74, 149 (2012).

Ovidius University Annals of Chemistry

Analele Universitatii "Ovidius" Constanta - Seria Chimie

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 15
PDF Downloads 5 5 5