Effect of Microencapsulation on Survival and Stability of Bifidobacterium bifidum BB01 Exposed to Simulated Gastrointestinal Conditions and in Different Food Matrices

Open access

Abstract

Bifidobacterium bifidum BB01 was microencapsulated by extrusion method with sodium alginate. This paper aimed to study the survival rate of microencapsulating Bifidobacterium bifidum BB01 in simulated gastrointestinal conditions, resistance to artificial bile salt and stability during storage. Results showed non-microencapsulated Bifidobacterium bifidum BB01 were more susceptible than microencapsulated under simulated gastrointestinal conditions, and microencapsulated Bifidobacterium bifidum BB01 exhibited a lower population reduction than free cells during exposure to simulated gastrointestinal, The enteric test showed that the microorganism cells were released from the monolayer microcapsules, double microcapsules and trilayer completely in 40min. The viable counts of monolayer microcapsules, double layer microcapsules and triple layer microcapsules decreased by nine magnitudes, four magnitude and one magnitude after 2h, respectively. Moreover, in fruit orange, pure milk and nutrition Express, the optimum storage times of free Bifidobacterium bifidum BB01, monolayer microcapsules, double layer microcapsules and triple layer microcapsules were 21 days, 21 days, 28 days and more than 35 days at 4°C, but at room temperature the optimum storage time were 7 days, 14 days, 21 days and more than 28 days, and the viable counts were maintained at 1×106 CFU g−1 or more.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Akalin A.S. & Erisir D. (2008). Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low-fat probiotic ice cream. Food Sci. 73 M184-188. DOI: 10.1111/j.1750-3841.2008.00728.

  • 2. Albertini B. Vitali B. Passerini N. Cruciani F. Di Sabatino M. Rodriguez L. & Brigidi P. (2010). Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis. European Journal of Pharmaceutical Sciences 40 359–366. DOI: 10.1016/j.ejps.2010.04.011.

  • 3. Anal A.K. & Singh H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science and Technology 18 240–251. DOI: 10.1016/j.tifs.2007.01.004.

  • 4. Annan N.T. Borza A.D. & Truelstrup L.H. (2008). Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Research Internationa 41(2) 184-193. DOI: 10.1016/j.foodres.2007.11.001.

  • 5. Aragon-Alegro L. C. Alegro J. H. A. Cardarelli H. R. Ming C. C. & Saad S. M. I. (2007). Potentially probiotic and synbiotic chocolate mousse. LWT - Food Science and Technology 40(4) 669-675. DOI: 10.1016/j.lwt.2006.02.020.

  • 6. Borges J.Q. Ferreira S.R.S.S. & Costa G.W. (2004). Cinética de sobrevivência de Lactobacillus acidophilus microencapsulados em matriz de alginato de cálcio eveiculados em musse de chocolate. In: Congresso Brasileiro de Ciência e Tecnologia de Alimentos 19 Recife 2004.

  • 7. Castro-Cislaghi F. P. D. Silva C. D. R. E. Fritzen-Freire C. B. Lorenz J. G. & Sant’Anna E. S. (2012). Bifidobacterium bb-12 microencapsulated by spray drying with whey: survival under simulated gastrointestinal conditions tolerance to nacl and viability during storage. Journal of Food Engineering 113(2) 186-193. DOI: 10.1016/j.jfoodeng.2012.06.006.

  • 8. Chaikham P. (2015). Stability of probiotics encapsulated with thai herbal extracts in fruit juices and yoghurt during refrigerated storage. Food Bioscience 12 61–66. DOI: 10.1016/j.fbio.2015.07.006.

  • 9. Chandramouli V. Kailasapathy K. Peiris P. & Jones M. (2004). An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. In simulated gastric conditions. Journal of Microbiological Methods 56 27–35. DOI: 10.1016/j.mimet.2003.09.002.

  • 10. Chen C. Yang J. Zhu J P. & Sun Y X. (2012). Research progress of wall materials and methods of probiotic microcapsule. Science and technology of food industry 33(14) 403-407. DOI: 1002-0306(2012)14-0403-05

  • 11. Chen H. Ma D.L. Li Y.C. Liu Y. & Wang. (2016). Optimization the process of microencapsulation of Bifidobacterium bifidum BB01 by Box-Behnken design. Acta Universitatis Cibiniensis Series E: FOOD TECHNOLOGY 20(2):17-28. DOI: 10.1515/aucft-2016-0012

  • 12. Chen H. Song Y J. Wang Y. & Shu G W. (2014). Effect of Cell Suspension-Alginate Ratio Tween 80 and Oil-Water Ratio on microcapsulation of B. bifidum BB01 and BB28. Journal of Pure and Apply Microbiology 8(2) 1167-1172.

  • 13. Cínthiahb S. & Susanami S. (2009). Viability of lactobacillus acidophilus la-5 added solely or in co-culture with a yoghurt starter culture and implications on physico-chemical and related properties of minas fresh cheese during storage. Food Science & Technology 42(2) 633-640.

  • 14. Collado C.M. & Sanz Y. (2006). Method for direct selection of potentially probiotic Bifidobacterium strains from human feces based on their acid-adaptation ability. Journal of Microbiological Methods 66 560–563. DOI: 10.1016/j.mimet.2006.01.007.

  • 15. Denkova R. Ilieva S. Nikolova D. Evstatieva Y. Denkova Z. & Yordanova M. et al. (2013). Antimicrobial activity of lactobacillus plantarum x2 against pathogenic microorganisms. Bulgarian Journal of Agricultural Science 19(2) 108-111.

  • 16. Doleyres Y. & Lacroix C. (2005). Technologies with free and immobilised cells forprobiotic bifidobacteria production and protection. International Dairy Journal 15 973–988. DOI: 10.1016/j.idairyj.2004.11.014.

  • 17. Doleyres Y. Fliss I. & Lacroix C. (2004). Increased stress tolerance of Bifidobacterium longum and Lactococcus lactis produced during continuous mixed-strain immobilized-cell fermentation. Journal of Applied Microbiology 97 527–539. DOI: 10.1111/j.1365-2672.2004.02326.x

  • 18. Fritzenfreire C. B. Prudêncio E. S. Pinto S. S. Muñoz I. B. & Rdmc A. (2013). Effect of microencapsulation on survival of bifidobacterium bb-12 exposed to simulated gastrointestinal conditions and heat treatments. LWT - Food Science and Technology 50(1) 39-44. DOI: 10.1016/j.lwt.2012.07.037.

  • 19. Goldin B. R. (1998). Health benefits of probiotics. British Journal of Nutrition 80(80) S203-7. DOI: 10.1111/j.1748-0159.2009.00147.x

  • 20. Gouin S. (2004). Micro-encapsulation: Industrial appraisal of existing technologies and trends. Trends in Food Science and Technology 15 330–347. DOI: 10.1016/j.tifs.2003.10.005.

  • 21. Homayouni A. Azizi A. Ehsani M. R. Yarmand M. S. & Razavi S. H. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry 111(1) 50-55. DOI: 10.1016/j.foodchem.2008.03.036.

  • 22. Hu M. Chen H. & Shu G W. (2010). Study on Bifidobacterium bifidum culture and lyoprotectant [D]. Shaanxi University of Science and Technology 21-22.

  • 23. Kailasapathy K. Harmstorf I. & Phillips M. (2008). Survival of L. acidophilus and B. animalis ssp. Lactis in stirred fruit yogurts. LWT – Food Science and Technology 41 (7) 1317–1322. DOI: 10.1016/j.lwt.2007.08.009.

  • 24. Krasaekoopt W. Bhandari B. & Deeth H. (2003). Review: evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal 13 (1) 3–13. DOI:10.1016/S0958-6946(02)00155-3.

  • 25. Li X.Y. Chenb X.G. Suna Z.H. Parkc H.J. & Chac D.S. (2011). Preparation of alginate/Chitosan/carboxymethyl chitosan complex microcapsules and application in Lactobacillus casei ATCC 393. Carbohydrate Polymers 83 1479–1485. DOI: 10.1016/j.carbpol.2010.09.053.

  • 26. Mandal S. Puniya A.K. & Singh K. (2006). Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. International Dairy Journal 16 1190–1195. DOI: 10.1016/j.idairyj.2005.10.005.

  • 27. Martoni C. Bhathena J. Jones M.L. Urbanska A.M. Chen H. & Prakash S. (2007). Investigation of microencapsulated BSH active Lactobacillus in the simulated human GI tract. Journal of Biomedicine and Biotechnology 2007 13684-13684. DOI: 10.1155/2007/13684.

  • 28. Matias N. S. Padilha M. Bedani R. & Saad S. M. I. (2016). In vitro gastrointestinal resistance of lactobacillus acidophilus la-5 and bifidobacterium animalis bb-12 in soy and/or milk-based synbiotic apple ice creams. International Journal of Food Microbiology 234 83-93. DOI: 10.1016/j.ijfoodmicro.2016.06.037.

  • 29. Mi Y. Su R. Fan D. D. Zhu X. L. & Zhang W. N. (2013). Preparation of no- carboxymethyl chitosan coated alginate microcapsules and their application to bifidobacterium longum bioma 5920. Materials Science & Engineering C Materials for Biological Applications 33(5) 3047-53. DOI: 10.1016/j.msec.2013.03.035.

  • 30. Park H. J. Lee G. H. Jun J. H. Son M. Choi Y. S. & Choi M. K. et al. (2016). Formulation and in vivo evaluation of probiotics-encapsulated pellets with hydroxypropyl methylcellulose acetate succinate (hpmcas). Carbohydrate Polymers 136 692-699. DOI: 10.1016/j.carbpol.2015.09.083.

  • 31. Shah N. P. (2007). Functional cultures and health benefits. International Dairy Journal 17(11) 1262-1277. DOI: 10.1016/j.idairyj.2007.01.014.

  • 32. Sohail A. Turner M. Coombes A. Bostrom T. & Bhandari B. (2011). Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. International Journal of Food Microbiology 145 162–168. DOI: 10.1016/j.ijfoodmicro.2010.12.007.

  • 33. Sun W. & Griffiths M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. International Journal of Food Microbiology 61 17–25. DOI: 10.1016/S0168-1605(00)00327-5.

  • 34. Tripathi M.K. & Giri S.K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 9 225-241. DOI: 10.1016/j.jff.2014.04.030.

  • 35. Truelstrup Hansen L. Allan-Wojtas P.M. Jin Y.L. & Paulson A.T. (2002). Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiology 19 35–45. DOI: 10.1006/fmic.2001.0452.

  • 36. Yang L. You L. X. Zhang Y. L. Chen H. Y. Yang B. & Zhang F. K. (2012). Processing Characteristics of Compound Microcapsules of Immune Colostrum and Bifidobacteria. Food science 23 150-154. DOI: 1002-6630(2012)23-0150-05

  • 37. Ying D. Y. Sanguansri L. & Weerakkody R. et al. (2016). Effect of encapsulant matrix on stability of microencapsulated probiotics. Journal of Functional Foods 25 447-458. DOI: 10.1016/j.jff.2016.06.020.

  • 38. Zhang F. Zhao M. Wang W. & Hu T. F. (2011). Encapsulation of bifidobacterium bifidum in improved alginate microcapsules to prolonging viability. Advanced Materials Research 183-185 1481-1485. DOI: 10.4028/www.scientific.net/AMR.183-185.1481.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 337 170 9
PDF Downloads 163 101 4