The evaluation of nanoparticles ZnO and TiO2 effects on Saccharomyces cerevisiae CNMN-Y-20 yeast strain

Open access

Abstract

This paper investigates the action of nanoparticles ZnO (10 nm) and TiO2 (30 nm) on growth of Saccharomyces cerevisiae CNMN-Y-20 yeast. Nanoparticles in concentration of 0,5; 1,0 and 5,0 mg/L in YPD medium did not modify significantly cell proliferation, biomass production, the carbohydrate content and the content of β-glucans at Saccharomyces cerevisiae CNMN-Y-20. Nanoparticles ZnO and TiO2 contributed to the decrease in protein content, which demonstrated the appearance of the alterations of yeast cell membranes.

1. Aguilar-Uscanga, B., Francois, J.M. (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Letters in Applied Microbiology, 37, 268-274.

2. Ban D. K., Subhankar P. (2014) Zinc Oxide Nanoparticles Modulates the Production of β-Glucosidase and Protects its Functional State Under Alcoholic Condition in Saccharomyces cerevisiae. Appl. Biochem Biotechnol 173:155–166 DOI 10.1007/s12010-014-0825-2

3. Chang Ya-Nan, Zhang M., Lin Xia, Zhang J., Xing G.(2012) The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles. Materials, 5, 2850-2871; doi:10.3390/ma5122850

4. Chiseliţa O., Usatîi A., Taran N., Rudic V., Chiseliţa N., Adajuc V. (2010) Tulpină de drojdie Saccharomyces cerevisiae – sursă de β-glucani. Brevet de invenţie MD 4048. MD-BOPI, 6/2010.

5. Dey P., Harborn J. (1993) Methods in Plant Biochemistry. Carbohydr. Academic Press, vol. 2, 529 p.

6. El-Diasty E. M., Ahmed M.A., Nagwa O., Salwa F., Samaa I. EL-Dek, Hanaa M. Abd el-Khalek, Mariam H. Youssif (2013) Antifungal activity of Zinc Oxide Nanoparticles against dermatophytic lesions of cattle. Romanian J. Biophys., Bucharest, Vol. 23, No. 3, p. 191–202

7. El-Said K. S., Ehab M. A., Koki Kanehira, Akiyoshi Taniguchi (2014) Molecular mechanism of DNA damage induced by titanium dioxide nanoparticles in toll-like receptor 3 or 4 expressing human hepatocarcinoma cell lines. Journal of Nanobiotechnology, 12:48.

8. Espita P. J. P., Nilda de Fátima Ferreira Soares, Jane Sélia dos Reis Coimbra, Nélio José de Andrade, Renato Souza Cruz, Eber Antonio Alves Medeiros. (2012) Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol., 5:1447–1464 DOI 10.1007/s11947-012-0797-6

9. Garcia Saucedo C. (2010) Developing a Yeast Cell Assay for Measuring the Toxicity of Inorganic Oxide Nanoparticles. Chemical & Environmental Engineering Departament University of Arizona. May 6th 2010. www.CitlaliGarcia_UA 5-6-10.

10. Gutul T., Rusu E., Condur N., Ursaki V., Goncearenco E., Vlazan P. (2014) Preparation of poly(N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles. Beilstein J. Nanotechnol. 5, 402–406. doi:10.3762/bjnano.5.47.

11. Liu Hong-Zhi, Qiang Wang, Yuan-Yuan Liu, and Fang Fang (2009) Statistical optimization of culture media and conditions for production of mannan by S. cerevisiae. Biotech. and Bioprocess Engineering, 14:577-583 DOI/10.1007/s12257-008-0248-4

12. Lowry O., Rosebough N., Farr A. et al. (1951) Protein measurment with the folin phenol reagent. J. Biol. Chem., vol. 193, p. 265-275.

13. Minju J., Park J.M., Lee E. J, Cho Y. S., Lee Ch., Kim J.M., Hah S.S. (2013) Cytotoxicity of Ultra-pure TiO2 and ZnO Nanoparticles Generated by Laser Ablation. Bull. Korean Chem. Soc., Vol. 34, No. 11 3301-3306.

14. Mitchell D. N., Godwin H.A., Claudio E. (2004) Nanoparticle Toxicity in Saccharomyces cerevisiae: A Comparative Study Using Au Colloid, Ag Colloid, and HAuCl4 • 3H2O in Solution. Nanoscape, Spring, Issue 1, 59-69.

15. Piskin S., Palantöken A., Yılmaz M.S. (2013) Antimicrobial Activity of Synthesized TiO2 Nanoparticles. International Conference on Emerging Trends in Engineering and Technology (ICETET'2013) Dec.7-8, 2013. PatongBeach, Phuket (Thailand).http://dx.doi.org/10.15242/IIE.E1213004.

16. Rai M. N., Duran N.E. (2011) Metal Nanoparticles in Microbiology. DOI 10.1007/978-3-642-18312-6_1, Springer-Verlag Berlin Heidelberg, 305 p.

17. Thammakiti, S.; Suphantharika, M.; Phaesuwan, T.; Verduyn (2004) Preparation of spent brewer's yeast β-glucans for potential applications in the food industry. International Journal of Food Science&Technology, 39(1), 21-29.

18. Vaseem M., Umar A., Hahn Y-B. (2010) ZnO Nanoparticles: Growth, Properties, and Applications. Metal Oxide Nanostructures and Their Applications. Chapter 4. ISBN: 1-58883-170-1Copyright © 2010 by American Scientific Publishers All rights of reproduction in any form reserved. Edited by Ahmad Umar and Yoon-Bong Hahn Volume 5: Pages 1–36

19. Weiss J., Takhistov P., Mc Clements J. (2006) Functional Materials in Food Nanotechnology. Journal of Food Science, Vol. 71, Nr. 9, doi: 10.1111/j.1750-3841.2006.00195.x

Acta Universitatis Cibiniensis. Series E: Food Technology

The Journal of „Lucian Blaga“ University of Sibiu

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 133 17
PDF Downloads 34 34 7