Process Control of Pre-Sowing Seed Treatment by Pulsed Electric Field

Open access

Abstract

Presented paper investigates the application of a line voltage changer to an installation for pre-sowing seed treatment by pulsed electric field (PEF) in order to increase the sowing quality of seeds and to suppress pathogenic microflora. The installation comprises an AC voltage regulator, a high voltage source, a voltage inverter, a working chamber for seed treatment, a control unit, and current and voltage sensors. The proposed installation differs from the existing apparatuses as it automatically provides the transformation of the pulsed electric field parameters by constant monitoring of power processes in a layer of treated seeds and feedback sending to the control unit. Seed treatment efficiency depends on the dose being determined by the parameters of electric field, namely, intensity in the seed layer, pulse duration, pulse repetition frequency, and seed treatment time. The parameters of rational treatment were determined, and the minimum treatment dose was calculated on the basis of results from the laboratory tests on the effect of pulsed electric field on sowing qualities of winter wheat seeds. It was experimentally confirmed that the proposed installation provides automatic transformation of electric field parameters depending on the changes taking place in the seed layer on the example of seeds with different moisture content maintaining the necessary treatment dose, ensuring the stability and repeatability of results.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ABOU EL-YAZIED A. – SHALABY O. A. – EL-GIZAWY A. M. – KHALF S. M. – El-SATAR A. 2011. Effect of magnetic field on seed germination and transplant growth of tomato. In Journal of American Science vol. 7 no. 12 pp. 306–312.

  • BILALIS D. J. – KATSENIOS N. – EFTHIMIADOU A. – KARKANIS A. 2012. Pulsed electromagnetic field: An organic compatible method to promote plant growth and yield in two corn types. In Electromagnetic Biology and Medicine vol. 31 no. 4 pp. 333–343.

  • BORODIN I. F. 1983. Development of electro-technology in farm production. In Mechanization and Electrification of Agriculture no. 6 pp. 27–31.

  • BROWN M. 2007. Diet Source. Calculation and Construction. K: MK-Press 288 pp.

  • DULSKIY A. V. – STARODUBTSEVA G. P. – HAINOVSKIY V. I. 2009. Pre-sowing seed treatment of carrot varieties with vitamin-6 by pulsed electric field. In Bulletin of the Russian Agricultural Science no. 6 pp. 59–60.

  • HAINOVSKIY V. I. – KO ZUREV A. E. 2011. Development of dielectric constant of crop seeds. In Mechanization and Electrification of Agriculture no. 11 pp. 30–31.

  • HAINOVSKIY V. I. – KO PULOVA O. S. – KO ZUREV A. E. 2012. Effect of doze calculation of pulsed electric field on seeds. In Agrarian Russia no. 9 pp. 37–42.

  • HAINOVSKIY V. I. – LUBAYA S. I. – KO PULOVA O. S. – AFANASEV M. A. 2017. The method of pre-sowing seed treatment. In Machine Operator no. 1 pp. 14–15.

  • HAINOVSKIY V. I. – STARODUBTSEVA G. P. – RUBTSOVA E. I. – HACHENKO A. A. 2007a. The method of pre-sowing treatment of soybean seeds by electric field. Patent for invention RUS 2340139 April 02 2007.

  • HAINOVSKIY V. I. – STARODUBTSEVA G. P. – RUBTSOVA E. I. 2007b. Pre-sowing stimulation of seeds of soybean pulsed electric field. In Mechanization and Electrification of Agriculture no. 10 pp. 17–18.

  • HNUKINA A. G. 2014. The rationale of the electro-technological parameters and modes of the low-voltage activator for pre-sowing treatment of onion seeds. Dissertation Stavropol 169 pp.

  • JAMSHID R. – SARA A. 2017 Influence of magnetopriming on germination growth physiology oil and essential contents of cumin (Cuminum cyminum L.). In Electromagnetic Biology and Medicine vol. 36 no. 4 pp. 325–329.

  • LIVINSKIY S. A. – STARODUBTSEVA G. P. – AFANASEV M. A. 2016. Voltage transformer for the installation of pre-sowing seed treatment. In APK Stavropolie Bulletin no. 4 pp. 35–39.

  • NELSON S. O. – GUO W. – TRABELSI S. – KAY S. J. 2007. Dielectric spectroscope of watermelons for sensing quality. In Measurement Science and Technology vol.18 pp. 1887–1892.

  • NOVÁK J. – VITÁZEK I. 2014. Electrical properties of sunflower achenes. In Acta Technologica Agriculturae no. 4 pp. 109–113.

  • NOVÁK J. 2013. Electrical properties of popcorn grains. In Acta Technologica Agriculturae no. 2 pp. 43–46.

  • ROSTAMI ZADEH E. – MAJD A. – ARBABIAN S. 2014. Effects of electromagnetic fields on seed germination in Urtica dioica L. In International Journal of Scientific & Technology Research vol. 3 no. 4 pp. 365–368.

  • STARODUBTSEVA G. P. – LIVINSKIY S. A. 2016. AC voltage regulator. In Machine Operator no. 1 pp. 46–47.

  • STARODUBTSEVA G. P. – LIVINSKIY S. A. – LUBAYA S. I. – KUSMONOV V. I. 2017a. The effect of the pulsed electric field (PEF) on sowing qualities of seeds depending on their moisture content and damage degree. In Central Scientific Bulletin no. 8 vol. 25 pp. 74–76.

  • STARODUBTSEVA G. P. – LIVINSKIY S. A. – LUBAYA S. I. – AFANASEV M. A. 2017b. The rationale for modes of pre-sowing seed treatment of winter wheat by pulsed electric field (PEF). In Central Scientific Bulletin vol. 25 no. 8 pp. 76–79.

  • VITÁZEK I. – VERES P. 2013. Drying rate of grain maize. In Acta Technologica Agriculturae vol. 16 no. 2 pp. 31–33.

  • YANG Y. – XI G. – ZHANG S. – LIU K. – ZHANG X. 2012. Development and application of pulsed electric field instrument with extremely low frequency and high-voltage for biological effects. In Transactions of the Chinese Society of Agricultural Engineering vol. 28 no. 2 pp. 49–54.

  • XU J. – TAN M. – ZHANG S. – LI F. 2013. Improving paddy seed vigor by corona discharge field processing and dielectric separation. In Transactions of the Chinese Society of Agricultural Engineering vol. 29 no. 23 pp. 233–240.

Search
Journal information
Impact Factor


CiteScore 2018: 0.98

SCImago Journal Rank (SJR) 2018: 0.315
Source Normalized Impact per Paper (SNIP) 2018: 0.986

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 556 215 11
PDF Downloads 251 99 10