Mechanistic and In silico Characterization of Metal ion Requirements of Escherichia coli Zinc Phosphodiesterase Activity

Adedoyin Igunnu 1 , Micheal F. Dada 1 , Tamonokorite AbelJack-Soala 1 , Ireoluwa Y. Joel 1 , Oluwafunmibi O. Lanre-Ogun 1 , Oluwadamilola O. Opadeyi 1 , Kelechi E. Okpara 1 , George O. Ambrose 1 , and Sylvia O. Malomo 1
  • 1 Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria


Zinc phosphodiesterase (ZiPD) participates in the maturation of tRNA precursors. The roles of metal ions in promoting phosphoryl transfer reaction on zinc phosphodiesterase (ZiPD) activity have not been fully characterized. Therefore, this study investigated the effects of some metal ions on phosphodiesterase activity of Escherichia coli ZiPD as well as the binding site and binding affinity of the metal ions. ZiPD activity was measured by monitoring the rate of hydrolysis of bis-para-nitrophenyl phosphate (bis-pNPP) in the presence of some selected divalent metal ions (Mn2+, Co2+, Mg2+ and Zn2+). The results obtained revealed that Mn2+ at 1 mM activated ZiPD activity by 4-fold with binding affinity score of 1.795. Co2+ at 0.5 mM activated ZiPD activity by 2-fold with binding affinity score of 1.773. Mg2+ at 0.5 mM enhanced the binding affinity of ZiPD for bis-pNPP but did not increase the turnover rate of ZiPD. Zn2+ at 1.5 mM activated ZiPD activity by 2-fold via increased affinity of ZiPD for bis-pNPP. In conclusion, the findings from this study showed that Mn2+ and Zn2+ are the most effective stimulatory ions of ZiPD for bis-pNPP while Zn2+ exerted the highest binding affinity of ZiPD for bis-pNPP.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Arise, R.O., Davies, F.F., Malomo, S.O., 2008, Independent and interactive effects of Mg2+ and Co2+ on some kinetic parameters of rat kidney alkaline phosphatase. Scientific Research and Essay, 3: 488-494.

  • Arora, S., Jain, C.K., Lokhande, R.S., 2017, Review of Heavy metal contamination in Soil. International Journal of Environmental Sciences and Natural Resources, 3: 1-6.

  • Chih-Hao, L., Yu-Feng, L., Jau-Ji, L., Chin-Sheng, Y., 2012, Prediction of metal ion binding sites in proteins using the fragment transformation method. Public Library of Science One, 7 (6): e39252.

  • Daiyasu, H., Osaka, K., Ishino, Y., Toh, H., 2001, Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. Federation of European Biochemical Societies Letters, 503: 1–6.

  • de la Sierra-Gallay, I.L., Pellegrini, O., Condon. C., 2005, Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z. Nature, 433: 657–661.

  • Dougherty, D. A., 2006, Modern Physical Organic Chemistry. Sausalito, CA: University Science Books. ISBN 978-1-891389-31-3.

  • Dutta, T., Deutscher, M.P., 2009, Catalytic properties of RNase BN/RNase Z from Escherichia coli: RNase BN is both an exo- and endoribonuclease. The Journal of Biological Chemistry, 284: 15425–15431.

  • Dutta, T., Malhotra, A., Deutscher, M.P., 2012, Exoribonuclease and endoribonuclease activities of RNase BN/RNase Z both function in vivo. The Journal of Biological Chemistry, 42: 35747–35755.

  • Feller, G., 2010, Protein stability and enzyme activity at extreme biological temperatures. Journal of Physics: Condensed Matter, 22: 32-31.

  • Green, R., Noller, H.M., 1997, Ribosomes and translation. Annual Review of Biochemistry, 66: 679–716.

  • Igunnu, A., Arise, R.O., Adebayo, J.O., Olorunniji, F.J., Malomo S.O., 2014, Catalytic cofactors (Mg2+ and Zn2+ ions) influence the pattern of vanadate inhibition of the monoesterase activity of calf intestinal alkaline phosphatase. Biokemistri, 2: 36–42.

  • Isani, G., Carpenè, E., 2014, Metallothioneins, unconventional proteins from unconventional animals: A long journey from nematodes to mammals. Biomolecules, 4: 435-457.

  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N., 2014, Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7: 60-72.

  • Kelly, K.O., Deutscher, M.P., 1992, The presence of only one of five exoribonucleases is sufficient to support the growth of Escherichia coli. Journal of Bacteriology, 174: 6682–6684.

  • Mhaindarkar, D., Gasper, R., Lupilov, N., Hofmann, E., Leichert, L., 2018, “Loss of a conserved salt bridge in bacterial glycosyl hydrolase BgIMG1 improves substrate binding in temperate environments.” Communications biology, 1 (1): 1-11.

  • Minagawa, A., Takaku, H., Ishii, R., Takagi, M., Shigeyuki, Y., Masayuki, N., 2006, Identification by Mn2+ rescue of two residues essential for the proton transfer of tRNase Z catalysis. Nucleic Acids Research, 34: 3811–3818.

  • Minagawa, A., Takaku, H., Takagi, M., Nashimoto, M., 2004, A novel endonucleolytic mechanism to generate the CCA 3ˈ termini of tRNA molecules in Thermotoga maritima. Journal of Biological Chemistry, 279: 15688–15697.

  • Morl, M., Marchfelder, A., 2001, The final cut. The importance of tRNA 3ˈ-processing. European Molecular Biology Organization Reports, 2: 17–20.

  • Olorunniji, F.J., Igunnu, A., Adebayo, J.O., Arise, R.O., Malomo, S.O., 2007, Cofactor interactions in the activation of tissue non-specific alkaline phosphatase: Synergistic effects of Zn2+ and Mg2+ ions. Biokemistri, 2: 43-48.

  • Robinson-Rechavi, M., Alibés, A., Godzik, A., 2006, Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritima. Journal of Molecular Biology, 356: 547–557.

  • Satya, P.G., 2018, Roles of metal ions in human health. MOJ Bioorganic and Organic Chemistry 2 (5): 221-224.

  • Shoichet, B.K., Baase, W.A., Kuroki, R., Matthews, B.W., 1995, “A relationship between protein stability and protein function.” Proceedings of the National Academy of Sciences, 92 (2): 452-456.

  • Shumilina, E., Dobrovolska, O., del Conte, R., Holen, H.W., Dikiy, A., 2014, Competitive cobalt for zinc substitution in mammalian methionine sulfoxide reductase B1 over expressed in E. coli structural and functional insight. Journal of Biological Inorganic Chemistry, 19: 85-95.

  • Singh, V., Verma, K., 2018, Metals from cell to environment: Connecting Metallomics with other omics. Open Journal of Plant Science, 3 (1): 01-14.

  • Spath B., Settele F., Schilling O.,| Igor D., Vogel A., Ingo F., Meyer-Klaucke W., Marchfelder A., 2007, Metal Requirements and Phosphodiesterase Activity of tRNase Z Enzymes. Biochemistry, 46: 14742-14750.

  • Tavtigian, S.V., Simard, J., Teng, D.H., Abtin, V., Baumgard, M., Beck, A., Camp, N.J., Carillo, A.R., Chen, Y., Dayananth, P., Desrochers, M., Dumont, M., Farnham, J.M., Frank, D., Frye, C., Ghaffari, S., Gupte, J.S., Hu, R., Iliev, D., Janecki, T., Kort, E.N., Laity, K.E., Leavitt, A., Leblanc, G., McArthur-Morrison, J., Pederson, A., Penn, B., Peterson, K.T., Reid, J.E., Richards, S., Schroeder, M., Smith, R., Snyder, S.C., Swedlund, B., Swensen, J., Thomas, A., Tranchant, M., Woodland, A.M., Labrie, F., Skolnick, M.H., Neuhausen, S., Rommens, J., Cannon-Albright, L.A., 2001, A candidate prostate cancer susceptibility gene at chromosome 17. Nature Genetics, 27: 172-180.

  • Vogel, A., Schilling, O, Meyer-Klaucke, W., 2004, Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II. Biochemistry, 43: 10379–10386.

  • Vogel, A., Schilling, O., Niecke, M., Bettmer, J., Meyer-Klaucke, W., 2002, ElaC encodes a novel binuclear zinc phosphodiesterase. Journal of Biological Chemistry, 277: 29078-29085.

  • Vogel, A., Schilling, O., Spa¨th, B., Marchfelder, A., 2005, The tRNase Z family of proteins. Physiological functions, substrate specificity and structural properties. Journal of Biological Chemistry, 386: 1253-1264.

  • Vogt, G., Argos, P., 1997, Protein thermal stability: hydrogen bonds or internal packing? Folding and Design, 2: S40–S46.

  • Yan, W., Jang, G.F., Haeseleer, F., Esumi, N., Chang, J., Kerrigan, M., Zack, D.J., 2001, Cloning and characterization of a human β, β-carotene-15, 15′-dioxygenase that is highly expressed in the retinal pigment epithelium. Genomics, 2: 193-202.


Journal + Issues