Application of Cellulose Acetate Reinforced Nanocomposite Fluorescence Film as Filter and Bio-Packaging Material with Antibacterial Properties

Yakubu Azeh 1 , 3 , David O. Adetitun 2 , Gabriel A. Olatunji 3 , and Folahan A. Adekola 3
  • 1 Department of Chemistry, Ibrahim Badamasi Babangida University, Lapai, Nigeria
  • 2 Department of Microbiology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
  • 3 Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, Nigeria

Abstract

In an effort at developing new filters and bio-packaging materials with antibacterial properties, nanocomposite fluorescence films of cellulose acetate reinforced with cellulose nanoparticles, methylcellulose nanoparticles, propylcellulose nanoparticles, toluene diisocyanate modified cellulose and cellulose acetate nanoparticles were prepared and characterized. The effects of the nanoparticles on the mechanical, crystallinity and morphology of the nanocomposite films was studied. The sensitivity of bacteria against the new nanocomposite films was experimented. Scanning electron microscopy showed the films to be well dispersed. Modulus increase was directly proportional to nanoparticle loading. Samples with maximum compatibility were cellulose nanoparticles (CNPs) loading of 40% with modulus of 113.3Mpa and toluene diisocyanate modified cellulose nanoparticles (TDI-CNPs) at 20% loading had 146.0Mpa. Others include cellulose acetate nanoparticles (CANPs) at 30% loading with 73.0Mpa; methylcellulose acetate nanoparticles (MCNPs) with 5% loading had a modulus of 87.3Mpa and pure cellulose acetate had 45.0Mpa. The films were applied as filters for the removal of cells of Bacillus; Enterococcus and Micrococcus sp. from the crude bacteriocin, with recoverability of 95.9% based on the bacteriocin produced. The films showed limited antibacterial properties against clinical Pseudomonas sp 1, Pseudomonas sp 2 and Proteus sp. It is concluded that the films showed limited antibacterial properties hence it has antibacterial potentials and capabilities.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andrea, G. P. R. F., Ana, R. P. F., Ana, A. V., Susana, C. M. F., Teodoro, P., Eva, R. A., Ana, B. T., Armando, J. D. S., Carlos, P. N., Carmen, S. R. F., 2013, Biocompatible bacterial cellulose-poly (2-hydroxyethyl methacrylate) nanocomposite films. BioMed Research International, 1-14.

  • Azeh, Y., Olatunji, G. A., Adekola, F. A., 2017, Synthesis and characterization of cellulose nanoparticles and its derivatives using a combination of spectro-analytical techniques. International Journal of Nanomedicine & Engineering. 2(6): 65-94.

  • Bauer A. W., Kirby, W. M. M., Sherries, S. C., Turk, M., 1966, Antibiotic susceptibility testing by a standard single disc method. American Journal of Clinical Pathology, 36:492-496.

  • Benyoussif, Y., Aboulhrouz, S., El-Achaby, M., Cherkaoui, O., Lallam, A., El-Bouchti, M., Zahouily, M., 2015, Preparation and properties of bionanocomposite films reinforced with nanocellulose isolated from Moroccan alfa fibres. Autex Research Journal, 15(3): 64-72.

  • Delaine, M. G., Gegina, C. S. M., Maryoris, L. S., Renato, S. C., 2015, Acetate film with bacteriophages for potential antimicrobial use in food packaging, LWT-Food Science and Technology, 63: 85-91.

  • Ekwem, O. H., 2014, Isolation of antimicrobial producing actobacilli from akamu (A Nigerian fermented cereal gruel). African Journal of microbiology Research, 8(7): 718-720.

  • Fernando, G. T., Solene, C., Omar, P. T., 2012, Biocompatibility of bacterial cellulose based biomaterials. Journal of Functional Biomaterials, 3(4): 864-878.

  • Fogorasi, M. S., Barbu, I., 2017, The potential of natural fibres for automotive sector – review. IOP Conf. Ser.: Materials Science Engineering, 252: 1-10.

  • Giorgi, M., Linus, W., Eva, E., Sandor, B., Maria, S., Albert, M., 2014, A size-exclusion nanocellulose filter paper for virus removal. Advanced Healthcare Materials, 3: 1546–1550.

  • Golkar, Z., Bagazra, O., Pace, D. G., 2014, Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. Journal of Infection in Developing Countries, 8(2):129–136.

  • Granja, P. L., Pouysegu, L., Pe,´Traud, M., De JeSo, B., Baquey, C., Barbosa, M. A., 2001, Cellulose Phosphates as Biomaterials. I. Synthesis and characterization of highly phosphorylated cellulose gels. Journal of Applied Polymer Science, 82: 3341–3353.

  • Huang, B., Tang, L., Dai, D., Ou, W., Li, T., Chen, X., 2011, Preparation of nanocellulose with cation–exchange resin catalysed hydrolysis, Biomaterials Science and Engineering, Rosario Pignatello (Ed.). London, UK.

  • Jinhui, P., Xin, L., Xueming, Z., Yuying, W., Runcang, S., 2013, Fabrication of cellulose film with enhanced mechanical properties in ionic liquid 1-allyl-3-methylimidaxolium chloride (AmimCl). Materials, 6: 1270-1284.

  • Kalia, S., Kaith, B. S., Kaur, I., 2011, Cellulose Fibers: Bio- and Nano- Polymer Composites. Green Chemistry and Technology. Springer-Verlag Berlin Heidelberg, Switzerland.

  • Kusworo, T. D. B., Wibowo, A. I., Harjanto, G. D., Yudisthira, A. D., Iswanto, F. B., 2014, Cellulose acetate membrane with improved permselectivity through modification dope composition and solvent evaporation for water softening. Research Journal of Applied Sciences, Engineering and Technology, 7(18): 3852-3859.

  • Lacroix, M., Khan, R. A., Salmieri, S., Huq, T., Khan, A., Safrany, A., 2011, Production and Properties of Nano Fiber (NCC) and Nano Tube (CNT) Reinforced Biodegradable Packaging Films: Effect of Gamma Radiation (IAEA-RC--12071). International Atomic Energy Agency (IAEA).

  • Lexa, G., 2014, Morphological, mechanical and rheological behaviour of cellulose nanocrystal poly (methyl methacrylate) nanocomposites prepared by wet ball milling and melt mixing. M.Sc. Thesis Submitted to the School of Graduate Studies McMaster University.

  • Marianne, L. T., Claire, P., Thierry, C., Jean-Pierre, B., Agnes, S., 2007, Physico-chemical modifications of the interactions between hemp fibres and a lime mineral matrix: impacts on mechanical properties of mortars, 10th International Conference of the European Ceramic Society, Berlin, Germany.

  • Marielle, H., Lars, A. B., 2007, Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. Journal of Applied Polymer Science. 106: 2817–2824.

  • Meiling, Y., Shujun, L., Mingxin, Z., Chunjie, L., Feng, D., Wei, L., 2013, Characterization of surface acetylated nanocrystalline cellulose by single-step method. BioResources, 8(4): 6330-6341.

  • Nadezhda, R., Lachezar, R., Sanchi, N., Isabel, M. M. S., Maria, H. V. F., Michael, H., 2011, Methylcellulose/SiO2 Hybrids: Sol-Gel Preparation and Characterization by XRD, FTIR and AFM. Central European Journal Chemistry. 9(1): 112-118.

  • Nor, F., Mat, Z., Salma, M. Y., Ishak, A., 2014, Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) Albedo. Journal of Nutrition and Food Sciences, 5(1) :1-4.

  • Pacheco, D. M., Johnson, J. R., and Koros, W. J., 2012, Aminosilanefunctionalized cellulosic polymers for increased carbon dioxide sorption. Industrial & Engineering Chemistry Research, 51(1):503-514.

  • Pang, J., Liu, X., Zhang, X., Wu, Y., Sun, R., 2013, Fabrication of cellulose film with enhanced mechanical properties in ionic liquid 1-Allyl-3-methylimidaxolium chloride (AmimCl). Materials, 6(4): 1270-1284.

  • Perera, D. H. N., Nataraj, S.K., Thomson, N. M., Sepe, A., Huttner, S., Steiner, U., Qiblawey, H., Sivaniah, E., 2014, Room-temperature development of thin film composite reverse osmosis membrane from cellulose acetate with antibacterial properties. Journal of Membrane Science, 453: 212-220.

  • Renata, P. H. B., Maria, V. G., Fabio, Y., 2012, Films of starch and poly (butylene adipate co-terephthalate) added of soybean oil (SO) and Tween 80. Carbohydrate Polymers. 90: 1452 – 1460.

  • Samuel, E., Wim, T., 2014, Surface modification of cellulose nanocrystals. The Royal Society of Chemistry, Nanoscale. 6: 7764-7779.

  • Samzadeh, K. A., Esfandiary, N., 2016, Synthesis and characterization of new biodegradable chitosan/polyvinyl alcohol/cellulose nanocomposite. Advances in Nanoparticles, 5: 18-26.

  • Sani, S. D. M., Deme, J. J. I., 2013, Isolation and screening of lactic acid bacteria from fermented milk products for bacteriocin production. Annals. Food Science and Technology, 14(1): 122-128.

  • Saxena, A. 2013, Nanocomposites based on nanocellulose whiskers. Published dissertation presented to the academic faculty in partial fulfillment of the requirements for the degree Doctor of philosophy in the school of Chemistry and Biochemistry, Georgia Institute of Technology.

  • Simone, M. L. R., Noor, R., Maria, I. G. D. M., Sonia, M. B. N., Clara, I. D. B., 2012, Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydrate Polymers, 87: 1131 – 1138.

  • Syuhada, N. I., Huang, N. M., Vijay, S. K., Lim, H. N., Rahman, S. A., Thien, G. S. H., Ibrahim, N. A., Ahmad, M., Moradihamedani, P., 2014, Enhanced Mechanical Properties of Chitosan/EDTA-GO Nanocomposites Thin Films (Peningkatan Sifat Mekanik Filem Nipis Nanokomposit Kitosan/EDTA-GO). Sains Malaysiana, 43(6): 851–859.

  • Tanzina, H., Stephane, S., Avik, K., Ruhul, A., Khan, C. L. T., Bernard, R., Carole, F., Jean, B., Jorge, U. C., Musa, R. K., Monique, L., 2012, Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydrate Polymers. 90: 1757–1763.

  • Wan, Y. Z., Honglin, L., He, F., Liang, H., Li, X. L., 2019, Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Composites Science and Technology, 69: 1212–1217.

  • Wienk, I. M., Boom, R. M., Beerlage, M. A. M., Buulte, A. M. W., Smolders, C. A., Strathmann, H., 1996, Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymer. Journal of Membrane Science, 113(2): 361-371.

  • Wright, G. D., 2014, Something new: Revisiting natural products in antibiotic drug discovery. Canadian Journal of Microbiology, 60(3):147–154.

  • Yiying, Y. B. S., 2007, A comparative study of cellulose I and II fibers and nanocrystals. M.Sc. Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College, School of Renewable Natural Resources, Heilongjiang Institute of Science and Technology.

  • Yoshifumi, A., Toyotoshi, U., 2013, Solid-phase extraction of Pb from common salt and water samples by cellulose modified with anhydrous EDTA. Cellulose Chemistry and Technology, 47(5-6): 479-486.

  • Youssef, H., Henri, C., Michel, R. V., 2006, TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose, 13: 679–687.

  • Yucheng, P., Douglas, J. G., Yousoo., H., Alper, K., Zhiyong, C., Mandla, A. T., 2013, Influence of drying method on the material properties of nanocellulose I: Thermostability and crystallinity. Cellulose, 20: 2379–2392.

  • Zhao, Y., Sugiyama, S., Miller, T., Miao, X., 2008, Nanoceramics for blood-borne virus removal. Expert Review of Medical Devices, 5(3): 395 - 405.

OPEN ACCESS

Journal + Issues

Search