Escherichia coli as Possible Agents of Spread of Multidrug Resistance in Port Harcourt, Rivers State.

Open access

Abstract

Multidrug resistance (MDR) continues to be a growing global issue. The problem of MDR is fuelled in part by the spread of the genes encoding resistance horizontally which is linked particularly to conjugation involving plasmids. Studies have demonstrated the presence of plasmids in drug resistant isolates, few have shown a link between these plasmids and drug resistance via plasmid curing especially in our locale. This study set out to explore this link in Escherichia coli isolates from Port Harcourt, Nigeria. Plasmid curing was done on a selection of clinical and non-clinical bacteria using acridine orange and antibiotic susceptibility testing carried out on both cured and uncured variants. Data generated was analysed to ascertain the multiple antibiotic resistance (MAR) index and MDR of each isolate. Data was then compared to ascertain effects of plasmid curing on antibiotic resistance of the isolates. Results revealed a decrease in resistance to 7 of 8 antibiotics following plasmid curing. The highest change was noted in ceftazidime (40%), followed by ofloxacin (26.7%). Plasmid curing caused a shift in MAR index values of isolates from higher to lower indices. At MAR index values of ≤0.25 occurrence increased from 5% to 36.7% while at MAR index values ≥0.75, occurrence reduced from 29.9% to 10.0%. A reduction in the degree of MDR was noted (from 55% to 36.7%). Strikingly, the reduction in MDR level of non-clinical isolates was 30% as opposed to 3.4% in the clinical isolates. This study shows a link between plasmids and antibiotic resistance. For the non-clinical isolates, the high-level link between MDR and plasmid carriage could indicate a higher use of antimicrobials in non-clinical rather than clinical settings. Additionally, it could be an indicator for a higher risk of the transfer of MDR determinants from non-clinical sources to human populations in our locale.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alkali B.R. Mohammed K. Opaluwa S.A. Najim Z. Ochei J. and Kakako S.L. 2018. Resistance Pattern and Plasmid Profile of E. coli Isolated from Diarrhoeic Children in Selected Health Centres in Sokoto Nigeria. J Adv Microbiol. 11(2) 1-7.

  • Awopeju A.T. Ide L.E. and Obunge O.K. 2015. Antibiotic susceptibilities and plasmid profile of Extended Spectrum Beta Lactamase-producing Escherichia coli from community acquired urinary tract infection at the University of Port Harcourt Teaching Hospital Nigeria. Br Microbiol Res J. 9(6) 1-9.

  • Bauer A.W. Kirby W.M. Sherris J.C. and Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 45(4) 493-496.

  • Buckner M.M. Ciusa M.L. and Piddock L.J. 2018. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiol Immunol. 42(6) 781-804.

  • Carattoli A. 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother. 53(6) 2227 – 2238.

  • Card R.M. Cawthraw S.A. Nunez-Garcia J. Ellis R.J. Kay G. Pallen M.J. Woodward M.J. and Anjum M.F. 2017. An in-vitro chicken gut model demonstrates transfer of a multidrug resistance plasmid from Salmonella to commensal Escherichia coli. MBio. 8(4) e00777-17.

  • Cheesbrough M. District Laboratory Practice in Tropical Countries Part I (2000). Cambridge University Press.

  • Cookey T.I. and Otokunefor K. 2016. Poultry environment as a reservoir of antimicrobial resistant bacteria – A Nigerian story. Br Microbiol Res J. 17(1) 1–11.

  • Cowan S.T. and Steel K.J. Manual for the Identification of Medical Bacteria. Fourth edition (1985). Cambridge University Press London.

  • Davis R. and Brown P.D. 2016. Multiple antibiotic resistance index fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J Med Microb. 65(4) 261-271.

  • de Been M. Lanza V.F. de Toro M. Scharringa J. Dohmen W. Du Y. Hu J. Lei Y. Li N. Tooming-Klunderud A. and Heederik D.J. 2014. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genetics. 10(12) e1004776.

  • Fortini D. Fashae K. Villa L. Feudi C. García-Fernández A. and Carattoli A. 2015. A novel plasmid carrying bla CTX-M-15 identified in commensal Escherichia coli from healthy pregnant women in Ibadan Nigeria. J Glob Antimicrob Resist. 3(1) 9-12.

  • Foster T.J. 1983. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol Rev. 47(3) 361.

  • Freire Martín I. AbuOun M. Reichel R. La Ragione R.M. and Woodward M.J. 2014. Sequence analysis of a CTX-M-1 IncI1 plasmid found in Salmonella 4512:i:− Escherichia coli and Klebsiella pneumoniae on a UK pig farm. J Antimicrob Chemother. 69(8) 2098-2101.

  • Horsfall S.J. Abbey S.D. Nwokah E.G. and Okonko I.O. 2017. Prevalence of Extended-Spectrum Beta-lactamases (ESBLs) and Plasmid status of Escherichia coli and Klebsiella pneumoniae isolates from clinical sources in UPTH Port-Harcourt Nigeria. New York Sci J. 10(3) 29 - 39

  • Jacoby G.A. Strahillevitz J. and Hooper D.C. 2014. Plasmid-mediated quinolone resistance. Microbiol Spectr. 2(2) doi:10.1128/microbiolspec.PLAS-0006-2013.

  • Keelara S. and Thakur S. 2014. Dissemination of plasmid-encoded AmpC β-lactamases in antimicrobial resistant Salmonella serotypes originating from humans pigs and the swine environment. Vet Microb. 173(1-2) 76-83.

  • Martínez-Martínez L. Pascual A. and Jacoby G.A. 1998. Quinolone resistance from a transferable plasmid. Lancet. 351(9105) 797-799.

  • National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility tests; Approved standard. Seventh edition (2000). M2-A7. National Committee for Clinical Laboratory Standards Wayne PA.

  • Ogbolu D.O. Daini O.A. Ogunledun A. Alli O.A. and Webber M.A. 2013. Dissemination of IncF plasmids carrying beta-lactamase genes in Gram-negative bacteria from Nigerian hospitals. J Infect Dev Ctries. 7(05) 382-390.

  • Ogbolu D.O. Alli A.O. Anorue M.C. Daini O.A. and Oluwadun A. 2016. Distribution of plasmid-mediated quinolone resistance in Gramnegative bacteria from a tertiary hospital in Nigeria. Indian J Pathol Microbiol. 59(3) 322-326.

  • Ojo K.K. Kehrenberg C. Odelola H.A. and Schwarz S. 2003. Structural analysis of the tetracycline resistance gene region of a small multiresistance plasmid from uropathogenic Escherichia coli isolated in Nigeria. J Antimicrob Chemother. 52(6) 1043-1044.

  • Ojo K.K. Kehrenberg. C. Odelola. H.A. Schwarz. S. and Roberts M.C. 2006. Tetracycline resistant plasmids from uropathogenic Escherichia coli from southwestern Nigeria. J Antimicrob Chemother. 18(1) 112-114.

  • Ojo S.K. Sargin B.O. and Esumeh F.I. 2014. Plasmid Curing Analysis of Antibiotic Resistance in beta-lactamase Producing Staphylococci from Wounds and Burns Patients. Pak J Biol Sci. 17(1) 130-133.

  • Orhue P.O. Okoebor F.O. and Momoh M.A. 2017. Pre and Post Plasmid Curing Effect on Pseudomonas aeruginosa Susceptibility to Antibiotics. Am J Curr Microb. 5(1) 33-41.

  • Otokunefor K. Agbude P. and Otokunefor T.V. 2018. Non-Clinical Isolates as Potential Reservoirs of Antibiotic Resistance in Port Harcourt Nigeria. Pan Afr Med J. 30 167.

  • Rains C.P. Bryson H.M. and Peters D.H. 1995. Ceftazidime. An update of its antibacterial activity pharmacokinetic properties and therapeutic efficacy. Drugs. 49(4) 577-617.

  • Roca I. Akova M. Baquero F. Carlet J. Cavaleri M. Coenen S. Cohen J. Findlay D. Gyssens I. Heure O.E. and Kahlmeter G. 2015. The global threat of antimicrobial resistance: Science for Intervention. New Microbes New Infect. 6 22-29.

  • Roche G. 1989. Cefixime the first oral third-generation cephalosporin. Presse Med. 18(32) 1541-1544.

  • Schumacher H. Skibsted U. Skov R. and Scheibel J. 1996. Cefuroxime resistance in Escherichia coli: resistance mechanisms and prevalence. APMIS. 104(7-8) 531-538.

  • Seiffert S.N. Hilty M. Perreten V. and Endimiani A. 2013. Extendedspectrum cephalosporin-resistant Gram-negative organisms in livestock: an emerging problem for human health? Drug Resist Updat. 16(1-2) 22-45.

  • Soge O.O. Adeniyi B.A. and Roberts M.C. 2006. New antibiotic resistance genes associated with CTX-M plasmids from uropathogenic Nigerian Klebsiella pneumoniae. J Antimicrob Chemother. 58(5) 1048-1053.

  • Sultan I. Rahman S. Jan A.T. Siddiqui M.T. Mondal A.H. and Haq Q.M. 2018. Antibiotics resistome and resistance mechanisms: A bacterial perspective. Front Microbiol. 9.

  • Sumrall E.T. Gallo E.B. Aboderin A.O. Lamikanra A. and Okeke I.N. 2014 Dissemination of the transmissible quinolone-resistance gene qnrS1 by IncX plasmids in Nigeria. PloS One. 9(10) e110279.

  • Watanabe T. 1963. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev. 27(1) 87.

  • Yang H.Y. Nam Y.S. and Lee H.J. 2014. Prevalence of plasmidmediated quinolone resistance genes among ciprofloxacinnonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from blood cultures in Korea. Can J Infect Dis Med Microbiol. 25(3) 163-169.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 59 59 10
PDF Downloads 38 38 8