Fractions of Adenopus breviflorus Extract Modulate Calcium-induced Mitochondrial Permeability Transition Pore Opening in Rat Liver

Open access


Mitochondrial dysfunction (MD) and impaired apoptotic pathways cause irreversible opening of the Mitochondrial Permeability Transition (MPT) pore, resulting in several pathological conditions e.g. cancer, ageing and neurodegenerative diseases. Many bioactive compounds from plants have been identified as modulators of the MPT pore which makes them possible drugs for the management of MD associated diseases. Adenopus breviflorus (A.breviflorus) is a tropical medicinal plant used in folkore medicine as an abortifacient and in treating gonorrhoea. In this study, the effects of ethylacetate and methanol fractions of A.breviflorus were assessed on rat liver MPT pore and Mitochondrial ATPase (mATPase). The fruit of A.breviflorus was extracted with water to obtain the aqueous Extract (AEAB), which was fractionated using vacuum liquid chromatography (VLC) to obtain ethylacetate and methanol fractions of A.breviflorus (EFAB, and MFAB). The extent of MPT pore opening and mATPase by EFAB and MFAB were assayed spectrophotometrically. The results obtained showed that EFAB and MFAB have no significant inductive effect on the MPT pore in the absence of Ca2+. However, in the presence of Ca2+, EFAB inhibited calcium-induced MPT pore opening in a non-concentration dependent manner. Maximum inhibition of MPT pore opening was 57.1% at 50 μg/ml. Interestingly, MFAB potentiated calcium ion effect by opening the pore further. Specifically, MFAB opened the MPT pore by 11, 10, 17 and 9% at 50, 150, 250 and 350 μg/ml, respectively. Furthermore, EFAB and MFAB inhibited mATPase activity in rat liver mitochondria at 62.5, 187.5, 312.5 and 437.5 μg/ml by 2.6, 18.8, 37.3, 52.6% and 41.8, 6.8, 24.3, 8.4%, respectively. The ethylacetate and methanol fractions of Adenopus breviflorus possess potential phytochemicals that can modulate opening of the mitochondrial permeability transition pore and inhibit mitochondrial ATPase activity in rat liver. These fractions may find use in drug development against diseases where excessive apoptosis takes place.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Angelova P. R. and Abramov A. P. 2018. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 592 (5) 692-702.

  • Bernardi P. 2013. The mitochondrial permeability transition pore: A mystery solved? Front. Physiol. 4 95

  • Calzia D. Oneto M. Caicci F. Bianchini P. Ravera S. Bartolucci M. Diaspro A. Degan P. Manni L. Traverso C E. and Panfoli I. 2015. Effect of polyphenolic phytochemicals on ectopic oxidative phosphorylation in rod outer segments of bovine retina. Br. J Pharmacol. 172 3890 – 3903.

  • Chin D. Huebbe P. Pallauf K. and Rimbach G. 2013. Neuroprotective properties of curcumin in Alzheimer’s diseasemerits and limitations. Curr. Med. Chem. 20 3955-3985

  • Crompton M. 1999. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341 233-249.

  • Elujoba A. A. Olagbenle S. O. and Adesina S. K. 1985. Antiimplantation activity of the fruit of Lagenaria breviflora Robert. J. Ethnopharmacol. 13 281-288.

  • Elustondo P. A. Nichols M. Negoda A. Thirumaran A. Zakharian E. Robertoson G. S. and Pavlov E. V. 2016. Mitochondrial permeability transition pore induction is linked to the formation of the complex of ATPasee C-Subunit polyhydroxybutyrate and inorganic polyphosphate. Cell Death Dis. 2 1-9.

  • Federico A. Cardaioli E. Da Pozzo P. Formichi P. Gallus G N. and Radi E. 2012. Mitochondria Oxidatiive Stress and Neurodegeneration. J. Neurol. Sci. 322 (1-2) 254-262.

  • Fulda S. 2010. Modulation of Apoptosis by Natural Products for Cancer Therapy. Planta Med. 76 1075-1079.

  • Fulda S. 2016. Regulation of necroptosis signalling and cell death by reactive oxygen species. Biol. Chem. 397 (7) 657–660

  • Fulda S. Galluzzi L. and Kroemer G. 2010. Targeting mitochondrial for cancer therapy. Nature Rev. 9 447-464.

  • Gorlach A. Bertram K. Hudecova S. and Krizanova O. 2015. Calcium and ROS: A mutual interplay. Redox Biol. 6 260-271.

  • Halestrap A. P. 2009. What is the mitochondrial permeability transition pore. J. Mol. Cel. Cardio. 41 (2) 821-821.

  • Hroudova J. Singh N. and Fisar Z. 2014. Mitochondrial Dysfunctions in Neurodegenerative Diseases: Relevance to Alzheimer’s Disease. Biomed. Res. Int. Vol. 2014 Article ID 175062 1-9.

  • Johnson D. and Lardy H. 1967. Isolation of Liver and Kidney mitochondria. Methods in Enzymol. 10: 94-96.

  • Khan N. Adhami V. M. and Mukhtar H. 2010. Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endo Related Cancer 17 39-52.

  • Kipp J. L. and Ramirez V. D. 2001. Effect of estradiol diethylstibestrol and resveratrol on F0F1-ATPase activity from mitochondrial preparations of heart liver and brain. Endocrine15(2) 165-175.

  • Lapidus R G. and Sokolove P. M. 1992. Inhibition by spermine of the inner membrane permeability transition of isolated rat heart mitochondria. FEBS Lett. 313 (3) 314-318.

  • Lapidus R G. and Sokolove P. M. 1993. Spermine Inhibition of the permeability transition of isolated rat liver mitochondria: An investigation of mechanisms. Biochem. Biophys. J. 64 246-253

  • Lardy H. A. and Wellman H. 1953. The catalytical effect of 2 4-dinitrophenol on adenosine triphosphatase and soluble enzymes. J. Biol. Chem. 201 357-370

  • Lemasters J. J. Theruvath T. P. Zhong and Nieminen A. 2009. Biochim. Biophys. Bioenerg. 1787 (11) 1395-1401.

  • Lowry O. H. Rosebrough N. J. Farr A. I. and Randall R. J. 1951. Protein Measurements with the Folin-phenol reagent. J. Biol. Chem. 193 260-265.

  • Madreiter-Sokolowski C. T. Sokolowski A. A. Graier W. F. 2017. Dosis Facot Sanitatem-Concentration-dependent effects of Resveratrol on mitochondria. Nutrients9 (10) 1117

  • Man S. Gao W. Zhang Y. Huang L. Liu C. 2010. Chemical Study and medical application of saponins as anti-cancer agents. Fitoterapia81(7) 703-714

  • Martin K. R. 2006 Targeting Apoptosis with Dietary Bioactive Agents. Exp. Biol. Med. 231 117-129.

  • McBride H. M. Neuspiel M. and Wasiak S. 2006. Mitochondria: More than just a powerhouse. Curr. Biol. 16(14) R551-R560.

  • NIH. Guide for the care and use of Laboratory Animals. NIH Publication 1985 No. 85-123 National Institutes of Health U.S. Department of Health Education and Welfare Bethesda USA.

  • Oyedeji T. A. Akintehinse T. Avan E. D. Soremekun O. O. Solomon O. E. and Olorunsogo O. O. 2017. Extracts of Adenopus breviflorus induce opening of Rat Liver Mitochondrial Membrane Permeability Transition Pore. Biokemistri. 29 (4) 140-145.

  • Perez-Hernandez J. Zaldvar-Machorro V. J. Villanueva-Porras D. Vega-Avila E. and Chavarria A. 2016. A Potential Alternative against Neurodegenerative Diseases: Phytodrugs. Oxid. Med. Cell. Longevity Volume 2016 Article ID 8378613 pp 1-19.

  • Qiu Y. Yu T. Wang W. Pan K. Shi D. and Sun H. 2014. Curcumin-induced melanoma cell death is associated with mitochondrial permeability transition pore (mPTP) opening. Biochem. Biophys. Res. Commun. 448 15-21.

  • Rao V. K. Carlson E. A. and Yan S. S. 2014. Mitochondrial permeability transition pore is a potential drug target for neurodegeration. Biochim. Biophys. Act. 1842(8) 1267-1272.

  • Rasola A. and Bernardi P. 2014 The mitochondrial permeability transition pore and its adaptive responses in tumour cells. Cell. Calcium 56 (6) 437-445.

  • Rottenberg H. Hoek J B. 2017. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell16 943-955.

  • Ruberto G. Baratta M. T. Deans S. G. and Dorman H. J. D. 2000. Antioxidant and antimicrobial Activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Medica. 66(8) 687-693.

  • Schwarz M. Miguel A. Navarro A. and Gross A. 2007. Mitochondrial carriers and pores: key regulators of the mitochondrial apoptotic program? Apoptosis 12 869-876

  • Sowndhararajan K. and Kim S. 2017. Neuroprotective and cognitive Enhancement Potentials of Angelica gigas Nakai Root: A review. Sci. Pharm. 85 (21) 1-11.

  • Sun N. Youle R. J. and Finkel T. 2016. The mitochondrial Basis of Aging. Mol. Cell. 61 654-666.

  • Wang X. 2001. The expanding role of mitochondria in apoptosis. Genes Dev. 15 2922-2933.

  • Zheng J. and Ramirez V. D. 2000. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br. J. Pharmacol. 13(5) 1115-1123.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 289 185 3
PDF Downloads 188 103 5