New tartrate based cyclic phosphoric acids as organocatalysts in Mannich reactions

Open access

Abstract

Cyclic phosphoric acids have attracted much attention as chiral organocatalysts. While binaphthol based ligands have been extensively used in various transformations, the analogous TADDOL-type ligands are less explored. A library of seventeen cyclic phosphoric acids with structural variation of the TADDOL backbone were synthesized and an optimization study of the Mannich reaction of aromatic N-(2-hydroxyphenyl)imines with 2,2-dimethyl-1-methoxy-silylenolate was performed. Enantioselectivities between 96% (S) and 70% (R) were observed and a rationalisation, based on crystal structure analysis and DFT calculations, is provided.

[1] (a) Rueping M., Nachtsheim B. J., Ieawsuwan W., Atodiresei I., Modulating the Acidity: Highly Acidic Brønsted Acids in Asymmetric Catalysis, Angew. Chem. Int. Ed., 2011, 50, 6706–6720. (b) Schenker S., Zamfir A., Freund M., Tsogoeva S. B., Developments in Chiral Binaphthyl-Derived Brønsted/Lewis Acids and Hydrogen-Bond-Donor Organocatalysis, Eur. J. Org. Chem., 2011, 2209–2222. (d) Akiyama T., Stronger Brønsted Acids, Chem. Rev., 2007, 107, 5744–5758. (c) Terada M., Chiral Phosphoric Acids as Versatile Catalysts for Enantioselective Transformations, Synthesis, 2010, 1929–1982.

[2] More than thirty 3,3’-aryl substituted 2,2’-dihydroxy-1,1’-binaphthyls and corresponding phosphoric acids have been reported; for recent examples see: (a) Romanov-Michailidis F., Guénée L, Alexakis A., Enantioselective Organocatalytic Fluorination-Induced Wagner–Meerwein Rearrangement, Angew. Chem. Int. Ed., 2013, 52, 9266–9270. (b) Li B., Chiu P., A Protecting-Group-FreeRoute to Chiral BINOL-Phosphoric Acids, Eur. J. Org. Chem., 2011, 3932–3937.

[3] Seebach D., Beck A. K., Heckel A., TADDOLs, Their Derivatives, and TADDOL Analogues: Versatile Chiral Auxiliaries, Angew. Chem. Int. Ed,. 2001, 40, 92–138.

[4] Cheong P. H.-Y., Legault C. Y., Um J. M., Celebi-Olcum N., Houk K. N., Quantum Mechanical Investigations of Organocatalysis: Mechanisms, Reactivities, and Selectivities, Chem. Rev., 2011, 111, 5042–5137.

[5] Takemoto Y., Kuraoka S., Hamaue N., Aoe K., Hiramatsu H., Iwat C., Enantioselective Cu-Catalyzed 1,4-Addition of Me3Al to 4,4-Disubstituted Cyclohexa-2,5-dienone, Tetrahedron, 1996, 52, 14177–14188.

[6] Voituriez A., Charette A. B., Enantioselective Cyclopropanation with TADDOL-Derived Phosphate Ligands, Adv. Synth. Catal., 2006, 348, 2363–2370.

[7] (a) Gratzer K., Gururaja G. N., Waser M., Towards Tartaric- Acid-Derived Asymmetric Organocatalysts, Eur. J. Org. Chem., 2013, 4471–4482. (b) Pellissier H., Use of TADDOLs and their derivatives in asymmetric synthesis, Tetrahedron, 2008, 64, 10279–10317.

[8] Gondi V. B., Gravel M., Rawal V. H., Hydrogen Bond Catalyzed Enantioselective Vinylogous Mukaiyama Aldol Reaction, Org. Lett., 2005, 7, 5657–5660.

[9] Thadani A. N., Stankovic A. R., Rawal V. H., Enantioselective Diels–Alder reactions catalyzed by hydrogen bonding, Proc. Natl. Acad. Sci. U.S.A., 2004, 101, 5846–5850.

[10] Huang Y., Unni A. K., Thadani A. N., Rawal V. H., Hydrogen bonding: Single enantiomers from a chiral-alcohol catalyst, Nature, 2003, 424, 146.

[11] Du H., Zhao D., Ding K., Enantioselective Catalysis of the Hetero-Diels–Alder Reaction between Brassard’s Diene and Aldehydes by Hydrogen-Bonding Activation: A One-Step Synthesis of (S)-(+)-Dihydrokawain, Chem.-Eur. J., 2004, 10, 5964–5970.

[12] Zhang X., Du H., Wang Z., Wu Y.-D., Ding K., Experimental and Theoretical Studies on the Hydrogen-Bond-Promoted Enantioselective Hetero-Diels−Alder Reaction of Danishefsky’s Diene with Benzaldehyde, J. Org. Chem., 2006, 71, 2862–2869.

[13] Villano R., Acocella M. R., Massa A., Palombi L., Scettri A., Enantioselective vinylogous aldol reaction of Chan’s diene catalyzed by hydrogen-bonding, Tetrahedron Lett., 2007, 48, 891–895.

[14] Akiyama T., Saitoh Y., Morita H., Fuchibe K., Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brønsted Acid Derived from TADDOL, Adv. Synth. Catal., 2005, 347, 1523–1526.

[15] (a) Verkade J. M. M., van Hemert L. J. C., Quaedflieg P. J. L. M., Rutjes F. P. J. T., Organocatalysed asymmetric Mannich reactions, Chem. Soc. Rev., 2008, 37, 29–41. (b) Ting A., Schaus S. E., Organocatalytic Asymmetric Mannich Reactions: New Methodology, Catalyst Design, and Synthetic Applications, Eur. J. Org. Chem., 2007, 5797–5815.

[16] Mukherjee S., Yang J. W., Hoffmann S., List B., Asymmetric Enamine Catalysis, Chem. Rev., 2007, 107, 5471–5569.

[17] (a) Zou L., Wang B., Mu H., Zhang H., Song Y., Qu J., Development of tartaric acid derived chiral guanidines and their application to catalytic enantioselective α-hydroxylation of β-dicarbonyl compounds, Org. Lett., 2013, 15, 3106–3109. (b) Seebach D., Beck A. K., Imwinkelried R., Roggo S., Wonnacott A., 87. Chirale Alkoxytitan(IV)-Komplexe für enantioselektive nucleophile Additionen an Aldehyde und als Lewis-Säuren in Diels-Alder–Reaktionen, Helv. Chim. Acta, 1987, 70, 954–974. For details see also: (c) Beck A. K., Gysi P., La Vecchia L., Seebach D., (4R,5R)-2,2-Dimethyl-α,α,α’,α’-tetra (naphth-2-yl)-1,3-dioxolane-4,5-dimethanol from dimethyl tartrate and 2-naphthylmagnesium bromide, Org. Synth., 1999, 76, 12–22.

[18] (a) Garcia R. A., Van Grieken R., Iglesias J., Sherrington D. C., Gibson C. L., Modification of Chiral Dimethyl Tartrate Through Transesterification: Immobilization on POSS and Enantioselectivity Reversal in Sharpless Asymmetric Epoxidation, Chirality, 2010, 22, 675–683. (b) Dindaroglu M., Akyol S., Simsir H., Neudorfl J.-M., Burke A., Schmalz H.-G., TARTROLderived chiral phosphine–phosphite ligands and their performance in enantioselective Cu-catalyzed 1,4-addition reactions, Tetrahedron: Asymmetry, 2013, 24, 657–662.

[19] Budragchaa T., Roller A., Widhalm, M., Regio- and Stereoselective Approach to 1,4-Ditertiary Carbinols from Dimethyl Tartrate, Synthesis, 2012, 44, 3238–3250.

[20] Compound 7a was prepared via bis-Weinreb amide and diketone according to ref.[19]

[21] (a) Pichota A., Gramlich V., Bichsel H.-U., Styner T., Knöpfel T., Wünsch R., Hintermann T., Schweizer W. B., Beck A. K., Seebach D., Preparation and Characterization of New C2- and C1-Symmetric Nitrogen, Oxygen, Phosphorous, and Sulfur Derivatives and Analogs of TADDOL Part II, Helv. Chim. Acta, 2012, 55, 1273-1302. (b) Seebach D., Beck A. K., Bichsel H.-U., Pichota A., Sparr C., Wünsch R., Schweizer W. B., Preparation and Characterization of New C2- and C1-Symmetric Nitrogen, Oxygen, Phosphorous, and Sulfur Derivatives and Analogs of TADDOL Part III, Helv. Chim. Acta, 2012, 55, 1303–1324.

[22] Biaggi C., Benaglia M., Annunziata R., Rossi S., Stereoselective Synthesis and Characterization of New Enantiomerically Pure Phosphoric Acids, Chirality, 2010, 22, 369–378.

[23] Berens U., Leckel D., Susanne O. S. J., Transacetalization of Diethyl Tartrate with Acetals of α-Dicarbonyl Compounds: A Simple Access to a New Class of C2-Symmetric Auxiliaries and Ligands, J.Org. Chem., 1995, 60, 8204–8208.

[24] Yamanaka M., Itoh J., Fuchibe K., Akiyama T., Chiral Brønsted Acid Catalyzed Enantioselective Mannich-Type Reaction, J. Am. Chem. Soc., 2007, 129, 6756–6764.

[25] Note: Also in the case of a [2+2] cycloaddition using tartrate based gold phosphoramidite catalysts the non bridged 2,3-OMe ligand proved to be superior to the ketalized one. Teller H., Flügge S., Goddard R., Fürstner A., Enantioselective Gold Catalysis: Opportunities Provided by Monodentate Phosphoramidite Ligands with an Acyclic TADDOL Backbone, Angew. Chem. Int. Ed., 2010, 122, 1993–1997.

[26] Love B. E., Jones E., The Use of Salicylaldehyde Phenylhydrazone as an Indicator for the Titration of Organometallic Reagents, J. Org. Chem., 1999, 64, 3755–3756.

[27] Garret M. R., Tarr J. C., Johnson J. S., Enantioselective Metallophosphite- Catalyzed C-Acylation of Nitrones, J. Am. Chem. Soc., 2007, 129, 12944–12945.

[28] Lindh I., Stawinski J., A General Method for the Synthesis of Glycerophospholipids and Their Analogues via H-Phosphonate Intermediates, J. Org. Chem., 1989, 54, 1338–1342.

[29] Seki C., Hirama M., Hutabarat R. N. D. M., Takada J., Suttibut C., Takahashi H., Takaguchi T., Kohari Y., Nakano H., Uwai K., Takano N., Yasui M., Okuyama Y., Takeshita M., Matsuyama H., Asymmetric synthesis of isoquinuclidines by Diels-Alder reaction of 1,2-dihydropyridine utilizing a chiral Lewis acid catalyst, Tetrahedron, 2012, 68, 1774–1781.

[30] Bruker SAINT V8.32B Copyright© 2005–2015 Bruker AXS.

[31] Sheldrick G. M. (1996). SADABS. University of Göttingen, Germany.

[32] Sheldrick G.M., A short history of SHELX, Acta Cryst., 2008, A64, 112–122.

[33] Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H., OLEX2, J. Appl. Cryst., 2009, 42, 339–341.

[34] Huebschle C. B., Sheldrick G. M., Dittrich B., ShelXle: a Qt graphical user interface for SHELXL, J. Appl. Cryst., 2011, 44, 1281–1284.

[35] Frisch M. J. et al., Gaussian, Inc.: Wallingford CT, 2010.

[36] (a) Lee C., Yang W., Parr R. G., Development of the Colle- Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 1988, 37, 785–789. (b) Becke A. D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

[37] (a) Krishnan R., Binkley J. S., Seeger R., Pople J. A., Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 1980, 72, 650–654. (b) Frisch M. J., Pople J. A., Binkley J. S., Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets, J. Chem. Phys., 1984, 80, 3265–3269.

Asymmetric Catalysis

formerly Asymmetric Organocatalysis

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 147 147 38
PDF Downloads 83 83 26