Effect of in vitro gastrointestinal digestion on phenolic compounds and the antioxidant activity of Aloe vera

Imen Laib 1 , 2 , Farida Kehal 2 , Nour Elyakine Haddad 2 , Taous Boudjemia 2 , and Malika Barkat 2
  • 1 Department of Natural and Life Sciences, Faculty of Sciences, University August 20, 1955, SKIKDA, Algeria
  • 2 BIOQUAL Laboratory, Institute of Nutrition, Food and Agri-Food Technologies (I.N.A.T.A.A.), University of Frères Mentouri-Constantine 1, Route de Ain El-Bey, 25000, Constantine, Algeria


The aim of this work is to study the effect of digestion on the total polyphenol content, flavonoids and the antioxidant activity of Aloe vera. Total polyphenol contents and flavonoid spectrophotometric methods: The evaluation of the antioxidant activity was carried out by three methods, DPPH, ABTS and CUPRAC. To confirm the results obtained we carried out an analysis by ATR-FTIR. The total phenol content found in the Aloe vera extract studied was 1.3638 mg EAG/100 g, while the content of flavonoids found in the Aloe vera extract studied was 0.690 mg EQ/100 g. The values of total polyphenols and flavonoids decreased under the effect of gastrointestinal digestion. The spectra obtained during the ATR-FTIR analysis show that Aloe vera is rich in phenolic compounds and flavonoids. Intense bands corresponding to O–H bonds, C=C bond, C–H, CO, CH3 and CH2 confirm the presence of these bioactive compounds. For both the DPPH and CUPRAC methods, Aloe vera extract reveals a strong antioxidant activity, which gradually decreases during the oral and gastric phase and then increases after the intestinal digestion. For the ABTS method, the antioxidant activity decreases during the oral phase, increases during the gastric phase and then decreases again during the intestinal phase.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]. Berger, M.M., Antioxidant micronutrients in major trauma and burns: evidence and practice, Nutr Clin Pract, 2006, 21, 438-49.

  • [2]. Djeridane, A.; Yous, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N., Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds, Food Chem, 2006, 97, 654-660.

  • [3]. Guo, X.; Mei, N., Aloe vera: a review of toxicity and adverse clinical effects, J Environ Sci Health, 2016, 34, 77-96.

  • [4]. Minjares-Feuentes, R.; Femenia, A.; Comas-Serra, F.; Rosséllo, C.; Rodrigue Gonzalez, V.M.; González Laredo, R.F.; Gallegos-Infante, J.A.; Medina-Torres, L., Effect of different drying procedures on physicochemical properties and flow behavior of Aloe vera (Aloe barbadensis Miller) gel., LWT−Food Science and Technology, 2016, 74, 378-386.

  • [5]. Choi, S.; Chung, M.H., A review on the relationship between Aloe vera components and their biologic effects, Semin Integr Med, 2003, 1, 53-62.

  • [6]. Kaithwas, G.; Singh, P.; Bhatia, D., Evaluation of in vitro and in vivo antioxidant potential of polysaccharides from Aloe vera (Aloe barbadensis Miller) gel, Drug Chem Toxicol, 2014, 37, 135-143.

  • [7]. Soriano Sancho, R.A.; Pavan, V.; Pastore, G.M., Effect of in vitro digestion on bioactive compounds and antioxidant activity of common bean seed coats, Food Res Int, 2015, 76, 74-78.

  • [8]. Kamiloglu, S., Bioavailability and bioactivity of black carrot polyphenols using in vitro digestion models combined with a co-culture model of intestinal and endothelial cell lines. Ph.D. Dissertation, Faculty of Bioscience Engineering, Ghent University, Belgium, 2016.

  • [9]. Chen, G.L.; Chen, S.G.; Zhao, Y.Y.; Luo, C.X.; Li, J.; Gao, Y.Q., Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion, Industrial Crops and Products, 2014, 57, 150-157.

  • [10]. De Ancos, B.; Cilla,A.; Barberá, R.; Sánchez-Moreno, C.; Cano, M. P., Influence of orange cultivar and mandarin postharvest storage on polyphenols, ascorbic acid and antioxidant activity during gastrointestinal digestion, Food Chemistry, 2017, 225, 114-124.

  • [11]. Liang, L.; Wu, X.; Zhao, T.; Zhao, J.; Li, F.; Zou,Y.; Mao, G.; Yang, L., In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastrointestinal digestion, Food Research International, 2012,46, 76-82.

  • [12]. Lucas-González, R.; Navarro-Coves, S.; Pérez-Álvarez, J.A.; Fernández-López, J.; Muñoz, L.A.; Viuda-Martos, M., Assessment of polyphenolic profile stability and changes in the antioxidant potential of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion, Industrial Crops and Products, 2016, 94, 774-782.

  • [13]. Talens, P.; Mora, L.; Bramley, P.M.; Fraser, P. D., Antioxidant compounds and their bioaccessibility in tomato fruit and puree obtained from a DETIOLATED-1 (DET-1) down-regulated genetically modified genotype, Food Chemistry, 2016, 213, 735-741.

  • [14]. Bouayed, J.; Deußer, R.; Hoffmann, L.; Bohn, T., Bioaccessible and dialyzable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns, Food Chemistry, 2012, 131, 1466-1472.

  • [15]. Kamiloglu, S.; Capanoglu, E., Investigating the in vitro bioaccessibility of in fresh and sun-dried figs (Ficus carica L.), Journal of Food Science and Technology, 2013, 48, 2621-2629.

  • [16]. Ydjedd, S.; Bouriche, S.; López-Nicolás, R.; Sánchez-Moya, T.; Frontela-Saseta, C.; RosBerruezo, G.; Rezgui, F.; Louaileche, H.; Kati, D.E., Effect of in vitro gastrointestinal digestion on encapsulated and nonencapsulated phenolic compounds of carob (Ceratonia siliqua L.) pulp extracts and their antioxidant capacity, J Agric Food Chem, 2017, 65, 827-835.

  • [17]. Goupy, J.; Creignton, L., Introduction aux plans d’expériences, 2006, Donud, France.

  • [18]. Laib, I.; Barkat, M., Optimization of Conditions for Extraction of Polyphenols and the Determination of the Impact of Cooking on Total Polyphenolic, Antioxidant, and Anticholinesterase Activities of Potato, Foods, 2018, 7, 36.

  • [19]. Laib, I.; Boubrik, F.; Barkat, M., Optimization of the extraction parameters of Aloe vera polyphenols and study of antioxidant and antifungal activities: application to molds isolated from durum wheat, Acta Scientifica Naturalis, 2019, 6, 79-90.

  • [20]. Elfalleh, W.; Hannachi, H.; Tlili, N.; Yahia, Y.; Nasri, N.; Ferchichi, A., Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower, J Med Plants Res, 2012, 6, 4724-4730.

  • [21]. Waterhouse, A., Folin-Ciocalteu Micro Method for Total Phenol in Wine, Food Anal Chem, 1999, 299, 152-178.

  • [22]. Dehpour, A.A.; Ibrahimzadeh, M.A.; Fazel, S.N.; Seyed, M.N.,Antioxydant activity of the methanol extract of Ferula assafoetida and its essential oil composition, Grasas Y Aceites,2009, 60, 405-412.

  • [23]. Blois, M.S., Antioxidant determinations by the use of a stable free radical, Nature, 1958, 181, 1199-1200.

  • [24]. Sharififar, F.;Mosh afi, M.H.; Mansouri, S.H.; Khodashenas, M.; Khoshnoodi, M., In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss, Food Cont, 2007, 18(7), 800-805.

  • [25]. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang M.; Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic Biol Med, 1999, 26, 1231.

  • [26]. Özyürek, M.; Güçlü, K.; Apak, R., The main and modified CUPRAC methods of antioxidant measurement, TrAC-Trends Anal Chem, 2011, 30, 652-664.

  • [27]. Turkmen, N.; Velioglu, Y.S.; Sari, F.; Polat, G., Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea, Molecules, 2007, 12, 484-496.

  • [28]. Velderrain-Rodríguez, G.; Quirós-Sauceda, A.; Mercado-Mercado, G.; Ayala-Zavala, J.F.; Astiazarán-García, H.; Robles-Sánchez, R.M.; Wall-Medrano, A.; Sayago-Ayerdi, S.; González-Aguilar, G.A., Effect of dietary fiber on the bioaccessibility of phenolic compounds of mango, papaya and pine apple fruits by an in vitro digestion model, Food Science and Technology (Campinas), 2016, 36, 188-194.

  • [29]. Seraglio, S.K.T.; Valese, A.C.; Daguer, H.; Bergamo, G.; Azevedo, M.S.; Nehring, P.; Gonzaga, L.V.; Fett,R.; Costa, A.C.O., Effect of in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds, minerals, and antioxidant capacity of Mimosa scabrella Bentham honeydew honeys, Food Research International, 2017, 99, 670-678.

  • [30]. Lucas-González, R.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J., In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges, Food Research International, 2018, 107, 423-436.

  • [31]. Bermúdez-Soto, M.J.;Tomás-Barberán, F.A.; García-Conesa, M.T., Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion, Food Chemistry, 2007, 102, 865-874.

  • [32]. Bouayed, J.; Hoffmann, L.; Bohn, T., Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake, Food Chemistry, 2011, 128, 14-21.

  • [33]. Sharaf, S.; Higazy, A; Hebeish, A., Propolis induced antibacterial activity and other technical properties of cotton textiles, International Journal of Biological Macromolecules, 2013, 59, 408-416.

  • [34]. Gutierrez-Gonçalves, M.E.J., Marcucci, M.C., Atividades Antimicrobiana e Antioxidante da Própolis do Estado do Ceará, Revista Fitos, 2009, 4(1), 81-86.

  • [35]. Barud, H.; Júnior, A.; Saska, S.; Mestieri, L.; Campos, J.A.D.B.; de Freitas, R.M.;Ferreira, N.U.; Nascimento, A.P.; Miguel, F.G.; de Oliveira Lima Leite Vaz, M.M.; Barizon, E.A.; Marquele-Oliveira, F.; Gaspar, A.M.M.; Ribeiro, S.J.L.; Berretta, A.A. Antimicrobial Brazilian propolis (EPPAF) containing biocellulose membranes as promising biomaterial for skin wound healing. Evidence Based Complementary and Alternative Medicine, 2013, 1-10.

  • [36]. Silva, A.J.; Silva, J.R.; de Souza, N.C.; Souto, P.C.S., Membranes from latex with propolis for biomedical applications, Mater Lett, 2014, 116, 235.

  • [37]. Saritha, M., Efficacy of topical Aloe vera in patients with oral lichen planus: à randomized double-blind study, J Oral Pathology and Medicine, 2010, 39(10), 735-740.

  • [38]. Salawu, K.M.; Ajaiyeoba, E.O.; Ogbole, O.O.; Adeniji, J.A.; Faleye, T.C.; Agunu, A., Antioxidant, brine shrimp lethality and antiproliferative properties of gel and leaf extracts of Aloe schweinfurthii and Aloe vera, J Herbs Spices Med Plants, 2017, 23(4), 263-270.

  • [39]. Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I., Chun, O.K., Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US, foods, J Food Compos Anal, 2011, 24, 1043-1048.

  • [40]. Zhao, H.; Dong, J., Lu, J.; Chen, J.; Li, Y.; Shan, L.; Lin, Y.; Fan, W.; Gu, G., Effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley (Hordeum vulgare L.), J Agric Food Chem, 2006, 54(19), 7277-7286.

  • [41]. Lachman, J.; Hamouz, K.; Sulc, M; Pivec, V.; Hejmankova, A.; Dvorak, P.; Cepl, J. Cultivar differences of total anthocyanins and anthocyanidins in red and purple coloured potatoes and their relation to antioxidant activity, Food Chem, 2009, 114, 836-843.

  • [42]. Hamouz, K.; Lachman, J.; Pazderu, K.; Tomášek, J.; Hejtmánková, K.; Pivec, V., Differences in anthocyanin content and antioxidant activity of potato tubers with different flesh color, Plant Soil Environ, 2011, 57, 478-485.

  • [43]. Hayes, J.E.; Stepanyan, V.; Allen, P.; O’Grady, M.N.; Kerry, J.P., Evaluation of the effects of selected plant-derived nutraceuticals on the quality and shelf-life stability of raw and cooked pork sausages, LWT Food Sci Technol, 2011, 44, 164-172.

  • [44]. Montoro, P.; Tuberoso, C.I.G.; Piacente, S.; Perrone, A.; De Feo, V.; Cabras, P.C., Stability and antioxidant activity of polyphenols in extracts of Myrtus communis L. berries used for the preparation of myrtle liqueur, J Pharm Biomed,2006, 41(5), 1614-1619.

  • [45]. Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A., In vitro bio-accessibility and antioxidant activity of grape polyphenols, Food Chemistry, 2010, 120, 599-606.

  • [46]. Henning, S.M.; Zhang, Y.; Rontoyanni, V.G.; Huang, J.; Lee, R.P.; Trang, A.; Nuernberger, G.; Heber, D.J., Variability in the antioxidant activity of dietary supplements from pomegranate, milk thistle, green tea, grape seed, goji, and acali: Effects of in vitro digestion, Journal of Agricultural and Food Chemistry, 2014, 62, 4313-4321.


Journal + Issues