Effect of seasonal variations on the content of some osmolytes of Aleppo pine and holm oak

M. Rached-Kanouni 1 , R. Bousba 2 , H. Khammar 1 , L. Redjaimia 1 , Z. Kadi 1 , and L. Ababsa 1
  • 1 Laboratory of Functional Ecology and Environment, Department of Life and Nature Sciences, Faculty of Exact Sciences and Life and Nature Sciences, University of ‘Larbi Ben M’hidi’, Oum El Bouaghi, Algeria
  • 2 Laboratory of Genetic, Biochemistry and Plant Biotechnology, Department of biology and ecology, Faculty of Natural and Life Sciences, University Mentouri Brothers Constantine 1, Algeria


The forest of Chettaba is of great ecological importance for the Constantine region. It is characterized by a very heterogeneous forest cover, the dominance of forest species (Pinus halepensis and Quercus ilex) and an advanced stage of degradation. Vegetation in this region reflects the climate. The summer is dry and hot while the winter is rainy and cold. Indeed, the combination of rain and temperature directly influences the physiology of the vegetation in this forest. The main objective of this work is to characterize the different responses of Aleppo pine and holm oak seedlings and to specify the biochemical variations under the seasonal effect. Biochemical assays of proline, soluble sugars, total proteins and chlorophyll were quantified in the different organs of two species for each of the years 2018–2019. The results obtained show very significant accumulation of total soluble sugars and proline in holm oak and Aleppo pine leaves compared to stems and roots during the winter season (520 ± 20 and 370 ± 17.98 µmol/mg DM respectively). Contrary to the previous results, the highest total protein levels were recorded during the summer with levels of 0.666 ± 0.116 and 1,626 ± 0.107 mg/g FM. Parallel to the accumulation of these three solutes, a gradual decrease in the chlorophyll pigment content was recorded in winter and summer.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]. Bentouati, A.; Bariteau M., Une sylviculture pour le pin d’Alep des Aurès (Algérie). Forêt méditerranéenne, 2005,XXVI (4), 315-321.

  • [2]. Mezali, M., Rapport sur le secteur forestier en Algérie. 3e session du forum des Nations Unis sur les forêts, 2003.

  • [3]. Vennetier, M., Changement climatique et dépérissements forestiers: causes et conséquences. Changement Climatique et Modification Forestière, CNRS, Paris, 2012, 50-60.

  • [4]. Meddour-Sahar, O. ; Derridj, A., 2012. Bilan des feux de forêts en Algérie: analyse spatio-temporelle et cartographie du risque (période 1985-2010). Sécheresse,2012,23 (2), 133-141.

  • [5]. Madoui, A. ; Gehu, J.M. ; Alatou, D., L’effet du feu sur la composition des pinèdes de Pinus halepensis Mill. dans le nord de la forêt de Bou-Taleb, Algérie. Ecologia Mediterranea, 2006, 32, 5-13.

  • [6]. Lemouissi, S. ; Rached-Kanouni, M.; Hadef, A.; Amine Khoja, A. E. M.; Alatou, D., Adaptation of Holm oak (Quercus ilex L.) to seasonal climate variations. International Journal of Management Sciences and Business research, 2014,3(5), 3035.

  • [7]. Rached-Kanouni, M.; Alatou, D.; Sakr, S., Responses of Cork Oak Seedlings to Short-Term Exposures to Low Temperatures. American Journal of Scientific Research, 2012,59, 2841.

  • [8]. Megrerouche, R.; Rached-Kanouni, M.; Amine Khodja, A. E. M.; Alatou D., Susceptibility to Fire (Case the Forest of Chettabah, Algeria). International Journal of Management Sciences and Business Research, 2015,4(4), 8–13.

  • [9]. Quézel, P.; Médail, F., Conséquences écologiques possibles des changements climatiques sur la flore et la végétation du bassin méditerranéen. Bocconea, 2003,16 (1), 397-422.

  • [10]. Petit, J. P.; Hampe, A.; Cheddadi, R., Climate changes and tree phylogeography in the Mediterranean. Taxon, 2005,54 (4), 877-885.

  • [11]. Nicault, A. ; Rathgeberg, C.; Tessier, L.; Thomasd, A., Observation sur la mise en place du cerne chez le pin d’Alep (Pinus halepensis Mill.): Confrontation entre les mesures de croissance radiale, de densité et les facteurs climatiques. Ann. For. Sci., 2002,58, 759-784.

  • [12]. Sarir, R. ; Benmahioul B., Etude comparative de la croissance végétative et du développement de jeunes semis de trois espèces de chênes (chêne vert, chêne liège et chêne zéen) cultivés en pépinière. Agric. For. J., 2017, 1 (1), 42-48.

  • [13]. Laala, A. ; Rached-Kanouni, M. ; Alatou, D., Les variations thermiques saisonniers et leurs impacts sur le comportement écophysiologiques des semis de pin d’Alep. European Scientific Journal,2013,9(24), 143–153.

  • [14]. Rached-Kanouni, M.; Alatou, D.; Sakr S., Effects of high temperature on concentrations of soluble sugars and quercitol of Cork oak (Quercus suber) seedlings. International Journal of Management Sciences and Business research, 2012,1(6), 1–10.

  • [15]. Chantuma, P.; Lacote, R.; Sonnarth, S.; Gohet E., Effects of Different Tapping Rest Periods during Wintering and Summer Months on Dry Rubber Yield of Hevea Brasiliensis in Thailand. J Rubber Res, 2017, 20, 261–272.

  • [16]. Durbak, A.; Yao, H.; McSteen, P., Hormone signaling in plant development. Current Opinion in Plant Biology, 2012,15, 92–96.

  • [17]. Gechev, TS.; Rille, J., Molecular basis of plant stress. Cellular and Molecular Lije Sciences, 2012,69, 3161–3163.

  • [18]. Sakai, A.; Larcher; W., Frost survival of plants-Responses and Adaptation to Freezing Stress. Ecol. Studies, 1997,62, 112–133.

  • [19]. Sakuma, Y.; Liu, Q.; Dubouzet, J. G.; Abe, H.; Shinozaki, K., DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002,290, 998-1009.

  • [20]. Sakr, S.; Alves, G.; Morillon, R. ; Maurel, K.; Decourteix, M.; Guilliot, A.; Fleurat-Lessard, P.; Julien, J.L.; Chrispeels M., Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree. Plant Physiology, 2003,133, 630-641.

  • [21]. Welling, A.; Palva, E.T., Molecular control of cold acclimation in trees. Physiologia Plantarum, 2006,127, 167-181.

  • [22]. Silpi, U.; Lacointe, A.; Kasempsap, P.; Thanysawanyangkura, S.; Chantuma, P.; Gohet, E.; Musigamart, N.; Clement, A.; Ameglio, T.; Thaler, P., Carbohydrate reserves as a competing sink: evidence from tapping rubber trees. Tree Physiology, 2007,27, 881–889.

  • [23]. Chinnusamy, V.; Zhu, J.; Zhu, J. K., Gene regulation during cold acclimation in plants. Physiologia Plantarum, 2006,126(1), 52-61.

  • [24]. Costa E Silva, F.; Shvaleva, A.; Broetto, F.; Ortuno, M.F.; Rodrigues, M.L. ; Almeida, M. H.; Chaves, M. M.; Pereira J.S., Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance. Tree Physiol., 2009,29, 77–86.

  • [25]. Delauney, A. J.; Verma, D. P. S., Proline biosynthesis and osmoregulation in plants. The Plant Journal,1993,4, 215–223.

  • [26]. Szabados, Z.; Savouré, A., Proline : a multifunctional amino acid. Trends Plant Sci., 2010, 15, 89–97.

  • [27]. Widodo, Patterson, J. H.; Newbigin, E.; Tester, M.; Bacic, A.; Roessner, U., Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J. Exp. Bot., 2009, 60(14), 4089–4103.

  • [28]. Rached-Kanouni, M; Alatou, D; Sakr, S., Responses of Cork Oak Seedlings to Short-Term Exposures to Low Temperatures. American Journal of Scientific Research, 2012,59, 28–41.

  • [29]. Rached-Kanouni, M.; Alatou, D.; Sakr S., Effects of high temperature on concentrations of soluble sugars and quercitol of Cork oak (Quercus suber) seedlings, International Journal of Management Sciences and Business Research, 2012,1(6), 1–13.

  • [30]. Chinnusamy, V.; Schumaker, K.; Zhu, J.K., Molecular genetic perspectives on cross-talk and specifity in abiotic stress signalling in plants. J. Exp. Bot., 2004,55 (395), 225–236.

  • [31]. Zaki, S.S.; Rady, M.M., Moringa oleifera leaf extract improves growth, physiochemical attributes, antioxidant defense system and yields of salt-stressed Phaseolus vulgaris L. plants. International Journal of ChemTech Research, 2015,8 (11), 120–134.

  • [32]. Parida, A. K.; Dagaonkar, V. S.; Phalak, M.S.; Aurangabadkar, L.P., Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiol. Plant. 2008,30(5), 619–627.

  • [33]. Chinnusamy, V.; Zhu, J.; Zhu, J. K., Cold stress regulation of gene expression in plants. Trends Plant Sci., 2007,12, 444–451.

  • [34]. Oraki, H.; Khajani, F. P.; Aghaalikhana, M., Effect of water deficit stress on proline contents, soluble sugars, chlorophyll and grain yield of sunflower (Helianthus annuus L.) hybrids. African J. Biotechnol., 2012,11, 164–168.

  • [35]. Assaha, D.V.M. ; Liu, L.; Ueda, A.; Nagaoka, T.; Saneoka, H., Effects of drought stress on growth, solute accumulation and membrane stability of leafy vegetable, huckleberry (Solanum scabrum Mill.). Journal of Environmental Biology, 2016,37, 107–114.

  • [36]. Shin, H.; Oh, S.; Kim, K.; Kim, D., Proline accumulates in response to higher temperatures during dehardening in peach shoot tissues. Hort. J., 2016,85(1), 37–45.

  • [37]. Lehmann, S.; Funck, D.; Szabados, L.; Rentsch, D., Proline metabolism and transport in plant development. Amino Acids, 2010,39(4), 949–962.

  • [38]. Kavi Kishor, P. B.; Sreenivasulu, N., Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 2014,37 (2), 300-311.

  • [39]. Verbruggen, N.; Hermans, C., Proline accumulation in plants: A review. Amino Acids, 2008,35, 753–759.

  • [40]. Angelcheva, L.; Mishra, Y.; Antti, H.; Kjellsen, T.D.; Funk, C.; Strimbeck, R.G.; Schröder, W. P., Metabolic analysis of extreme freezing tolerance in Siberian spruce (Picea obovate). New Phytol. 2014,204 (3), 545–555.

  • [41]. Baker, S. S.; Wilhelm K.S.; Thomashow M. F., The 5′-Region of Arabidopsis-Thaliana Cor15a Has Cis-Acting Elements That Confer Cold-Regulated, Drought-Regulated and Aba-Regulated Gene-Expression. Plant Mol. Biol., 1994,24, 701–713.

  • [42]. De Ronde, J.A.; Cress, W.A.; Krüger, G. H. J.; Strasser, R. J.; Van, Staden, J., Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J. Plant. Physiol., 2004,161, 1211–1224.

  • [43]. Souren, J. E.; Wiegant, F.A.; Van, wijk, R., The role of hsp70 in protection and repair of luciferase activity in vivo; experimental data and mathematical modelling. Cell Mol. Life Sci., 1999,55, 799–811.

  • [44]. Sung, D.Y.; Kaplan, F.; Lee, K. J.; Guy, C. L., Acquired tolerance to temperature extremes. Trends in Plant Science, 2003,8, 179–187.

  • [45] Dionne, J., Protection hivernale et tolérance au froid du Pâturin Annuel Pea ann. Plant J., 2001,4, 215-223.

  • [46]. Houde, M. ; Daniel, C.; Lachapelle, M; Allard, F.; Laliberté, S.; Sarhan, F., Immunolocalization of freezing-tolerance-associated proteins in the cytoplasme and nucleoplasm of wheat crown tissues. Plant. J., 1995,8, 583–593.

  • [47]. Vierling E., Chloroplast-localized Clp proteins. In: Guidebook to molecular chaperones and Protein-Folding Catalysts. M. J. Gething (ed.), Sambrook and Tooze Publications at Oxford University Press, 1997, 255–258.

  • [48]. Alaoui-Sossé, B.; Parmentier, C.; Dizengremel, P; Barnola, P., Rhythmic growth and carbon allocation in Quercus robur. Starch and sucrose. Plant Physiology and Biochemistry, 1994,32, 331–339.

  • [49]. Gebre, G. M.; Tschaplinski, T.J., Solute accumulation of chestnut oak and dogwood leaves in response to throughfall manipulation of an upland oak forest. Tree Physiol., 2002,22, 251–260.

  • [50]. Gebre, G. M.; Kuhns, M. R.; Brandle, J. R., Organic solute accumulation and dehydration tolerance in 3 water-stressed Populus deltoides clones. Tree Physiol., 1994,14, 575–587.

  • [51]. Cornic, G.; Ghashghaie J., Effect of temperature on net CO2 assimilation and photosystem II quantum yield of electron transfer of French bean (Phaseolus vulgaris L.) leaves during drought stress. Planta, 1991,185, 255-260.

  • [52]. Santos, C. V., Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae-Amesterdam,2004,103, 9399.

  • [53]. Bates L.; Waldren R. P.; Teare I. D., Rapid determination of free proline for water-stress studies. Plant and Soil, 1973,39, 205207.

  • [54]. Dubois, M.; Gilles, K.A.; Hamilton J.K; Rebers P.A.; Smith F., Colorimetric method for the determination of sugars and related substances. Anal. Chem., 1956, 28, 350–356.

  • [55]. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976,72, 248-254.


Journal + Issues