Green-extraction of essential oil of the species Ruta chalepensis L.: gas chromatography-mass spectroscopy-infra red analysis and response surface methodology optimization


The objective of the present study was the optimization of the parameters affecting the hydrodistillation of Ruta chalepensis L. essential oil using response surface design type Box-Behnken. After an appropriate choice of three parameters, 15 experiments were performed leading to a mathematical second-degree model relating the response function (yield of essential oil) to parameters and allowing a good control of the extraction process. The realization of the experiments and data analysis was carried out by response surface methodology (RSM). A deduced second-order polynomial expression was used to determine the optimal conditions necessary to obtain a better essential oil yield. These optimized operating conditions were: a granulometry of 2 mm, a condensation-water flow rate of 3.4 mL/min and an extraction time of 204 min. Analysis of variance (ANOVA) indicates that the generated second-order polynomial model was highly significant with R2=0.9589 and P<0.006. The gas chromatography-mass spectrometry analysis of essential oil extracted from the Ruta chalepensis L. aerial parts revealed the presence of 2-undecanone, 2-nonanone and 2-decanone as major components.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Bourrain, J.L., « Allergies aux huiles essentielles : aspects pratiques », Revue française d’allergologie, 2013, 53, 30-32.

  • [2] Babar, A.; Naser, A.A.; Saiba, S.; Aftab, A.; Shah, A.K.; Firoz, A., “Essential oils used in aromatherapy: A systemic review”, Asian Pac J Trop Biomed., 2015, 5(8), 601–61.

  • [3] Jacqueline, S., « Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNSA) », 2009, Université de La Réunion. Colloque GP3A-Tananarive.

  • [4] Benbelaid, F.; Khadir, A.; Abdoune, M.A.; Bendahou, M.; Muselli, A.; Costa, J., “Antimicrobial activity of some essential oils against oral multidrug resistant Enterococcus faecalis in both planktonic and biofilm state”, Asian Pacific Journal of Tropical Biomedicine, 2014, 4(6), 463-472.

  • [5] Nashwa, T.; Hassan, H.M.; Sameh, M.M.A.; Radwan, I.A.; Hammouda, O.; El-Gendy, A.O., “Comparative chemical and antimicrobial study of nine essential oils obtained from medicinal plants growing in Egypt”, Journal of basic and applied sciences, 2014, 3, 149-156.

  • [6] Glisic, S.; Jasna, I.; Mihajlo, R.; Dejan, S., “Extraction of sage (Salvia officinalis L.) by supercritical CO2: Kinetic data, chemical composition and selectivity of diterpenes”, J. of Supercritical Fluids, 2010, 52, 62–70.

  • [7] Pavlić, B.; Vidović, S.; Vladić, J.; Radosavljević, R.; Cindrić, M.; Zeković, Z., “Subcritical water extraction of sage (Salvia officinalis L.) by products Process optimization by response surface methodology”, Journal of Supercritical Fluids, 2016, 116, 36–45.

  • [8] Mu’azu, K.; Mohammed-Dabo, I.A.; Waziri, S.M., “Development of Mathematical Model for the Prediction of Essential Oil Extraction from Eucalyptus Citriodora Leave”, Journal of Basic and Applied Scientific Research, 2012, 2(3), 2298-2306.

  • [9] Aleksic, V.; Knezevic, P., “Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L.”, Microbiological Research, 2014, 169, 240–254.

  • [10] Galadima, M.S.; Ahmed, A.S.; Olawale, A.S.; Bugaje, I.M., “Optimization of Steam Distillation of Essential Oil of Eucalyptus tereticornis by Response Surface Methodology”, Nigerian Journal of Basic and Applied Science, 2012, 20(4), 368-372.

  • [11] Mastura, A.M.; Najwa, M.; Khatimah, M., “Supercritical Fluid Extraction of Citronella Oil from Cymbopogon nardus and its Optimization”, Business Engineering and Industrial Applications Colloquium, 2013, 9, 73-78.

  • [12] Akalın, M.K.; Tekin, K.; Akyüz, M.; Karagöz, S., “Sage oil extraction and optimization by response surface methodology”, Industrial Crops and Products, 2015, 76, 829–835.

  • [13] Timung, R.; Barik, C.R.; Purohit, S.; Vaibhav, V.G., “Composition and anti-bacteial activity analysis of citronella oil obtained by hydrodistillation: Process optimization study”, Industrial Crops and Products, 2016, 94, 178–188.

  • [14] Afsaneh, M.; Mina, A., “Application of response surface methodology: design of experiments and optimization: a mini review”, Indian Journal of Fundamental and Applied Life Sciences, 2014, 4, 2434-2439.

  • [15] Daniel, G.; Verônica, M., “The use and importance of design of experiments (DOE) in process modelling in food science and technology”, Mathematical and Statistical Methods in Food Science and Technology, First Edition. 2014.

  • [16] Vijaya, C.S.V.; Maravajhala, V., “Response surface methodology during optimization studies - an overview”, Journal of Scientific Research in Pharmacy, 2016, 5(9), 124-129.

  • [17] Quezel, P.; Santa, S., « Nouvelle flore de l’Algérie et des régions désertiques méridionales », Tome II-Ed., CNRS, Paris. 1963.

  • [18] Merghache, S., Hamza, M. & Tabti, B. Etude physicochimique de l’huile essentielle de Ruta chalepensis L. de Tlemcen, Algérie. Afrique science. 2009, 5(1): 67-81.

  • [19] Liu, S.; Yang, F.; Zhang, C.; Ji, H.; Hong, H.; Deng, C., “Optimization of process parameters for supercritical carbon dioxide extraction of Passiflora seed oil by response surface methodology”, Journal of Supercritical Fluids, 2009, 48, 9–14.

  • [20] Fadil, M.; Farah, A.; Ihssane, B.; Haloui, T.; Rachiq, S., “Optimization of parameters influencing the hydrodistillation of Rosmarinus officinalis L. by response surface methodology”, J. Mater. Environ. Sci., 2015, 6(8), 2346-2357.

  • [21] Hancco, V.; Poilâne, C.; Chen, J., « In 17èmes Journées Nationales sur les Composites, Poitiers Futuroscope », France. 2011.

  • [22] Chopra, S.; Gayathri, V.P.; Sanjay, K.M., “Release modulating hydrophilic matrix systems of losartan potassium: Optimization of formulation using statistical experimental design”, European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 73–82.

  • [23] Wijngaard, H.H.; Brunton, N., “The optimisation of solid–liquid extraction of antioxidants from apple pomace by response surface methodology”, Journal of Food Engineering, 2010, 96, 134–140.

  • [24] Bendriss, H., « Valorisation des extrais de plantes aromatiques et médicinales de : “Ruta chalepensis et Marrubium Vulgare”, Mémoire de magister. Université Hassiba Ben Bouali Chlef (Algérie). 2003.

  • [25] Attou, A., « Contribution à l’étude phytochimique et activités biologiques des extraits de la plante Ruta chalepensis (Fidjel) de la région d’Ain Témouchent », Mémoire de magister. Université Abou Bekr Belkaid Tlemcen (Algérie). 2011.

  • [26] Majdoub, O.; Dhen, N.; Souguir, S.; Haouas, D.; Baouandi, M.; Laarif, A.; Chaieb, I., « Chemical composition of Ruta chalepensis essential oils and their insecticidal activity against Tribolium castaneum », Tunisian Journal of Plant Protection, 2014, 9(1), 83-90.

  • [27] Baser, K.H.C.; Özek, T.; Beis, S.H., “Constituents of the Essential Oil of Ruta chalepensis L. from Turkey”, J. Essent. Oil Res., 1996, 8, 413-414.

  • [28] Inigo, R.P.A.; Be Viana, M. E. L.; Catalan, C.A.N.; De Iglesias, D.I.A., “Essential oil of Ruta chalepensis L.(Rutaceae)”, Essenze Deriv. Agrum., 1981, 51, 349-351.

  • [29] Rustaiyan, A.; Khossravi, M.; Sultani-Lotfabadi, F.; Yari, M.; Masoudi, S.; Monfared, A., “Constituents of the essential oil of Ruta chalepensis L. from Iran”, J. Essent. Oil Res., 2002, 14 378-379.

  • [30] Bagchi, G.D.; Dwivedi, P.D.; Mandal, S.; Naqvi, A.A., Kumar, S., “Essential oil constituents of Ruta chalepensis L. plants grown in India”, Indian Perfumer, 2003, 47, 39-41.

  • [31] Verzera, V.; Mondello, L.; Ragusa, S.; Dugo, G., “Essential oil from leaves oftypical Mediterranean plants. Note II Ruta chalepensis L”, Essenze derivati agrumari, 2000, 70, 207–210.

  • [32] Baghlaf, A.O.; El-Beihand, S.K.A.; El-Tawil, B.A.H., “Constituents of local plants. Part 75. study of volatile oil of Saudi Ruta chalepensis L. Juniperus procera Hochst. ex Endle. and Euphorbia heliofscopia L”, Herba Hung., 1983, 22, 39-42.

  • [33] Pintore, G.; Usai, M.; Bradesi, P.; Juliano, C.; Boatto, G.; Tomi, F.; Chessa, M.; Cerri, R.; Casanova, J., “Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica”, Flavour and Fragrance Journal, 2002, 17, 15-19.

  • [34] Bourkhiss, M.; Hnach, M.; Bourkhiss, B.; Ouhssine, M.; Chaouch, A.; Satrani, B., « Effet de séchage sur la teneur et la composition chimique des huiles essentielles de Tetraclinis articulata (Vahl) Masters », Grosolutions, 2009, 20(1), 44-48.

  • [35] Suzana, F.A.; Leonardo, L.B.; Joelma, A.M.; Roberto, F.V.; Pedro, H.F.; Renê, O.C.; José, R.P.; Maria, T.F., “Chemical variability of the essential oils from fruits of Pterodon emarginatus in the Brazilian Cerrado”, Brazilian Journal of Pharmacognosy, 2013, 23(2), 224-229.

  • [36] Bampouli, A.; Kyriakopoulou, K.; Papaefstathiou, G.; Louli, V.; Krokida, M.; Magoulas, K., “Comparison of different extraction methods of Pistacia lentiscus var. chia leaves: Yield, antioxidant activity and essential oil chemical composition”, Journal of Applied Research on Medicinal and Aromatic Plants, 2014, 1, 81–91.

  • [37] Atailia, I.; Djahoudi, A., « Composition chimique et activité antibactérienne de l’huile essentielle de géranium rosat (Pelargonium graveolens L’Hér.) cultivé en Algérie », Phytothérapie, 2015, 13, 156–162

  • [38] Santos, D.L.; Heleno, D.F.; Leonardo, L.B.; José, R.P.; Leonice, M.F.; Pierre, A.S.; Pedro, H.F.; Stone, S.; Tatiana, S.F., “Chemical composition of essential oils of leaves, flowers and fruits of Hortia oreadica”, Revista Brasileira de Farmacognosia, 2016, 26, 23–28.

  • [39] Guan, X.; Yao, H., “Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology”, Food Chemistry, 2008, 106, 345–351.


Journal + Issues