Elemental composition of surface soils in Nature Park Shumen Plateau and Shumen City, Bulgaria

Vanya Koleva 1 , Teodora Koynova 1 , Asya Dragoeva 1  and Nikolay Natchev 1 , 2
  • 1 Faculty of Natural Sciences, University of Shumen, Bulgaria
  • 2 Department for Integrative Zoology, Vienna University, 1090, Vienna, Austria


Anthropogenic activities cause environmental pollution and alter biogeochemical cycles. Soils in cities and their vicinity are exposed to different pollutants. Nature Park Shumen Plateau is a protected area situated in the proximity of Shumen (Bulgaria). The aim of this research was to compare elemental composition of surface soil samples from Nature Park with two areas in Shumen city.

Soil samples from seven sites on the territory of Nature Park and from two urban sites were collected. The elemental composition of the samples was determined using Energy Dispersive X-Ray Fluorescence technique. Principal component analysis and cluster analysis were performed to interpret the complex data.

The content of 24 elements was determined: Br, Y, Zr, Mo, Ag, Cd, Sn, Sb, I, Cs, Ba, La, Ce Si, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb, Sr, and Pb. Results presented here and previously showed that concentrations of heavy metals Cu, Zn, Cd and Pb are below the upper limit according to Bulgarian legislation. Concentrations of Mn and Fe in samples from Nature Park were comparable to the literature data reported for unpolluted areas. Principal component analysis and cluster analysis show similarity of the content of 24 elements between samples from Nature Park and from Shumen city. These findings are in accordance with our previous positive results from Allium-test: cytogenetic endpoints showed a presence of harmful compounds in Nature Park soils.

The content of heavy metals in the surface soils studied show a lack of environmental risk for Nature Park. However, a similar distribution pattern of the investigated elements in the park and two anthropologically influenced areas in Shumen city indicated a potential hazard in Nature Park.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]. Koynova, T.; Koleva, V.; Dragoeva A.; Natchev, N., Peri-urban National Parks as Green Spaces for Recreation - A Case Study of Nature Park Shumen Plateau, International Journal of Social Ecology and Sustainable Development, 2019, 10(1): Article 4. – in press

  • [2]. Carr, R.; Chaosheng, Z.; Norman, M., Identification and mapping of heavy metal pollution in soils of a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS, Environ Geochem Health, 2008, 30(1):45-52. doi:10.1007/s10653-007-9106-0

  • [3]. Çevik, F.; Göksu, M.Z.L.; Barış Derici, O.B.D.; Fındık, Ö., An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses, Environ Monit Assess, 2009, 152:309-317. doi:10.1007/s10661-008-0317-3

  • [4]. Slavík, R.; Julinová, M.; Labudíková, M., Screening of the Spatial Distribution of Risk Metals in Topsoil From an Industrial Complex, Ecol Chem Eng S, 2012, 19(2):259-272. doi:10.2478/v10216-011-0020-0

  • [5]. Tzvetkova, N.; Malinova, L.; Doncheva, M.; Bezlova, D.; Petkova, K.; Karatoteva, D.; Venkova, R., Soil Contamination in Forest and Industrial Regions of Bulgaria, IntechOpen, 2016. doi:10.5772/64716.

  • [6.] Malinova, D., Investigation on Soil Polution of Different Landscapes on the Territory of Bulgarka Natural Park, Forest Science, 2010, 2:75-84. https://naukazagorata.files.wordpress.com/2013/02/article-2-2010-full-text-71.pdf

  • [7.] Djingova, R.; Wagner, G.; Peshev, D., Heavy metal distribution in Bulgaria using Populus nigra ‘Italica’ as a biomonitor, Sci Total Environ, 1995, 172:151-158. doi:10.1016/0048-9697(95)04785-9

  • [8.] Djingova, R.; Wagner, G.; Kuleff, I., Screening of heavy metal pollution in Bulgaria using Populus nigra ‘Italica’, Sci Total Environ, 1999, 234:175-184. http://www.ncbi.nlm.nih.gov/pubmed/10507156

  • [9]. Cervi, E.C.; Saraiva da Costa, A.C.; Granemann de Souza Junior, I., Magnetic susceptibility and the spatial variability of heavy metals in soils developed on basalt, Journal of Applied Geophysics, 2014, 111:377-383. http://dx.doi.org/10.1016/j.jappgeo.2014.10.024

  • [10]. Citterio, S.; Aina, R.; Labra, M.; Ghiani, A.; Fumagalli, P.; Sgorbati, S.; Santagostino, A., Soil Genotoxicity Assessment: A New Strategy based on Biomolecular Tools and Plant Bioindicators, Environ Sci Technol, 2002, 36:2748-2753. doi:10.1021/es0157550

  • [11]. Lors, C.; Ponge, J.; Aldaya, M.M.; Damidot, D., Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils, Environmental Pollution, 2011, 159(10):2974-2981. doi:10.1016/j.envpol.2011.04.028

  • [12]. Bilo, F.; Borgese, L.; Dalipi, R.; Zacco, A.; Federici, S.; Masperi, M.; Leonesio, P.; Bontempi, E.; Depero, L.E., Elemental analysis of tree leaves by total reflection X-ray fluorescence: New approaches for air quality monitoring, Chemosphere, 2017, 178:504-512. https://doi.org/10.1016/j.chemosphere.2017.03.090

  • [13]. Jia, Z.; Li, S.; Wang, L., Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin, Scientific Reports, 2018, 8:3256. doi:10.1038/s41598-018-21569-6

  • [14]. Moriyama, T.; Morikawa, A.; Doi, M.; Fess, S., Aerosol filter analysis using polarized optics EDXRF with thin-film FP method, Powder Diffraction, 2014, 29(2):137-140. doi:10.1017/S0885715614000207

  • [15]. Koz, B., Energy-dispersive X-ray fluorescence analysis of moss and soil from abandoned mining of Pb-Zn ores, Environmental Monitoring and Assessment, 2014, 186(9). doi:10.1007/s10661-014-3780-z

  • [16]. Singh, V.; Joshi, G.C.; Bisht, D., Energy Dispersive X-Ray Fluorescent Analysis of Soil in the Vicinity of Industrial Areas and Heavy Metal Pollution Assessment, Journal of Applied Spectroscopy, 2017, 84(2):306-311. doi:10.1007/s10812-017-0468-5

  • [17]. Ene, A.; Stihi, C.; Popescu, I.V.; Gheboianu, A.; Bosneaga, A.; Bancuta, I., Comparative Studies on Heavy Metal Content of Soils Using AAS and EDXRF Atomic Spectrometric Techniques, Annals of “Dunarea De Jos” University of Galati Mathematics, Physics, Theoretical Mechanics Fascicle II, 2009, 51-54.

  • [18]. Koynova, T.; Koleva, V.; Dragoeva, A.; Kuleva, I., Cytotoxicity and Genotoxicity of Soil in Shumen City Park, Cbu International Conference on Innovations In Science And Education, Prague, Czech Republic, 2017, 5:1149-1153. doi:10.12955/cbup.v5.1086

  • [19]. Koleva, V.; Dragoeva, A.; Koynova, T.; Natchev, N., Soil Pollution Screening Using Physico-Chemical and Cytogenetic Approaches: A Case Study of a Bulgarian Suburban Nature Park, Pol J Environ Stud, 2018, 27(3):1-8. doi:10.15244/Pjoes/76409

  • [20]. Luo, X.; Ding, J.; Xu, B.; Wang, Y.; Li, H.; Yu, S., Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils, Science of the Total Environment, 2012, 424:88-96. doi:10.1016/j.scitotenv.2012.02.053

  • [21]. Regulation No 3/01.08.2008, For standards of acceptable content of harmful substances in soil by the Ministry of Environment and Water, Ministry of Health and Ministry of Agriculture and Food

  • [22]. Duffus, J.H., 2002. “Heavy Metals” – A Meaningless Term?, Pure Appl Chem, 74(5):793-807. http://www.szennyviztudas.bme.hu/files/iupac%20heavy%20metals.pdf

  • [23]. Tumuklu, A.; Yalcin, M.G.; Sonmez, M., Detection of Heavy Metal Concentrations in Soil Caused by Nigde City Garbage Dump, Polish J of Environ Stud, 2007, 16(4):651-658. http://www.pjoes.com/Detection-of-Heavy-Metal-Concentrations-in-Soil-r-nCaused-by-Nigde-City-Garbage-Dump,88034,0,2.html

  • [24]. Wei, B.; Yang, L., A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China, Microchemical Journal, 2010, 94:99-107. doi:10.1016/j.microc.2009.09.014

  • [25]. Ene, A.; Pantelică, A.; Freitas, C.; Boşneagă, A., EDXRF And INAA Analysis of Soils in the Vicinity of a Metallurgical Plant, Rom Journ.Phys, 2011, 56:993-1000. http://www.ifin.ro/rjp/2011_56_7-8/0993_1000.pdf

  • [26]. Salah, E., Heavy Metals Concentration in Urban Soils of Fallujah City, Iraq, Journal of Environment and Earth Science, 2013, 3(11):100-113. ISSN 2225-0948

  • [27]. Kaur, M.; Soodan, R.K.; Katnoria, J.K.; Bhardwaj, R.; Pakade, Y.B.; Nagpal, A.K., Analysis of physico-chemical parameters, genotoxicity and oxidative stress inducing potential of soils of some agricultural fields under rice cultivation, Tropical plants research, 2014, 1(3):49-61. ISSN (P): 2349 – 9265

  • [28]. Victoria, A. G.; Cobbina, S.J.; Dampare, S.B.; Duwiejuah, A.B., Heavy Metals Concentration in Road Dust in the Bolgatanga Municipality, Ghana, Journal of Environment Pollution and Human Health, 2014, 2(4):74-80. doi:10.12691/jephh-2-4-1

  • [29]. Wang, G.; Yan, X.; Zhang, F.; Zeng, C.; Gao, D., Traffic-Related Trace Element Accumulation in Roadside Soils and Wild Grasses in the Qinghai-Tibet Plateau, China, Int J Environ Res Public Health, 2014, 11:456-472. doi:10.3390/ijerph110100456

  • [30]. Vučković, I.; Špirić, Z.; Stafilov, T.; Kušan, V., Biomonitoring of Air Pollution With Zinc in Croatia Studied by Moss Samples and ICP-AES, Sec Math Tech Sci, MANU, XXXIII, 2012, 47-60. ISSN 0351–3246

  • [31]. Councell, T.B.; Duckenfield, K.U.; Landa, E.R.; Callender, E., Tire-Wear Particles as a Source of Zinc to the Environment, Environ Sci Technol, 2004, 38:4206-4214. doi:10.1021/es034631f

  • [32]. Adriano, D.C., Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, 2nd ed., 2001. doi:10.1007/978-0-387-21510-5

  • [33]. Klimek, B., Effect of Long-Term Zinc Pollution on Soil Microbial Community Resistance to Repeated Contamination, Bull Environ Contam Toxicol, 2012, 88:617-622. doi:10.1007/s00128-012-0523-0

  • [34]. Fan, Y.; Zhu, T.; Li, M.; He, J.; Huang, R., Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China, Journal of Healthcare Engineering, 2017, Article ID 4124302. https://doi.org/10.1155/2017/4124302

  • [35]. Dabkowska-Naskret, H.; Jaworska, H., Manganese mobility in soils under the impackt of alkaline dust emission, J Elem, 2013, 3:371-379. doi:10.5601/jelem.2013.18.3.02

  • [36]. O’Neal1, S.; Zheng, W., Manganese Toxicity Upon Overexposure: a Decade in Review, Curr Environ Health Rep, 2015, 2(3):315-328. doi:10.1007/s40572-015-0056-x.

  • [37]. Kula, E.; Hrdlička, P.; Hedbávný, J.; Švec, P., Various content of manganese in selected forest tree species and plants in the undergrowth, Beskydy, 2012, 5(1):19-26. ISSN: 1803-2451

  • [38]. Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N., Toxicity, mechanism and health effects of some heavy metals, Interdiscip Toxicol, 2014, 7(2):60-72. doi:10.2478/intox-2014-0009

  • [39]. Rengel, Z., Availability of Mn, Zn and Fe in the rhizosphere, Journal of Soil Science and Plant Nutrition, 2015, 15(2):397-409. https://scielo.conicyt.cl/pdf/jsspn/v15n2/aop3615.pdf

  • [40]. Al Obaidy, A.H.M.J.; Al Mashhadi, A.A.M., Heavy Metal Contaminations in Urban Soil within Baghdad City, Iraq, Journal of Environmental Protection, 2013, 4:72-82. http://dx.doi.org/10.4236/jep.2013.41008

  • [41]. El-Gammal, M.I.; Ali, R.R.; Samra, R.M.A., Assessing Heavy Metal Pollution in Soils of Damietta Governorate, Egypt, International Conference on Advances in Agricultural, Biological & Environmental Sciences, Dubai (UAE), 2014. http://dx.doi.org/10.15242/IICBE.C1014136

  • [42] OSWER Directive 9285.7-69, Ecological Soil Screening Level for Iron, 2003.

  • [43]. Zhou, C.; Guo, J.; Zhu, L.; Xiao, X.; Xie, Y.; Zhu, J.; Ma, Z.; Wang, J., Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms, Plant Physiology and Biochemistry, 2016, 105:162-173. https://doi.org/10.1016/j.plaphy.2016.04.025

  • [44]. Zaharieva, T.; Kasabov, D.; Römheld, V., Responses of peanuts to iron-manganese interaction in calcareous soil, 1988, 11(6-11):1015-1024, doi:10.1080/01904168809363865

  • [45]. Golobocanina, D.D.; Skrbic, B.D.; Miljevic, N.R., Principal component analysis for soil contamination with PAHs, Chemometrics and Intelligent Laboratory Systems, 2004, 72:219-223. doi:10.1016/j.chemolab.2004.01.017

  • [46]. Thavamani, P.; Megharaj, M.; Naidu, R., Multivariate analysis of mixed contaminants (PAHs and heavy metals) at manufactured gas plant site soils, Environ Monit Assess, 2012, 184:3875-3885. doi:10.1007/s10661-011-2230-4

  • [47]. Marković, J.; Jović, M.; Smičiklas, I.; Pezo, L.; Šljivić-Ivanović, M.; Onjia, A.; Popović, A., Chemical speciation of metals in unpolluted soils of different types: Correlation with soil characteristics and an ANN modelling approach, Journal of Geochemical Exploration, 2016, 165:71-80. https://doi.org/10.1016/j.gexplo.2016.03.004

  • [48]. Kelepertzis, E., Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece, Geoderma, 2014, 221-222:82-90. http://dx.doi.org/10.1016/j.geoderma.2014.01.007

  • [49]. Facchinelli, A.; Sacchi, E.; Mallen, L., Multivariate statistical and GIS-based approach to identify heavy metal sources in soils, Environmental Pollution, 2001, 3:313-324. https://doi.org/10.1016/S0269-7491(00)00243-8

  • [50]. Bartkowiak, A.; Lemanowicz, J., Effect of forest fire on changes in the content of total and available forms of selected heavy metals and catalase activity in soil, Soil Science Annual, 2017, 68(3):140-148. doi:10.1515/ssa-2017-0017


Journal + Issues