Thermodynamic model for solution behavior and solid-liquid equilibrium in Na-Al(III)-Fe(III)-Cr(III)-Cl-H2O system at 25°C

Open access

Abstract

The knowledge of the thermodynamic behavior of multicomponent aqueous electrolyte systems is of main interest in geo-, and environmental-sciences. The main objective of this study is the development of a high accuracy thermodynamic model for solution behavior, and highly soluble M(III)Cl3(s) (M= Al, Fe, Cr) minerals solubility in Na-Al(III)-Cr(III)-Fe(III)-Cl-H2O system at 25°C. Comprehensive thermodynamic models that accurately predict aluminium, chromium and iron aqueous chemistry and M(III) mineral solubilities as a function of pH, solution composition and concentration are critical for understanding many important geochemical and environmental processes involving these metals (e.g., mineral dissolution/alteration, rock formation, changes in rock permeability and fluid flow, soil formation, mass transport, toxic M(III) remediation). Such a model would also have many industrial applications (e.g., aluminium, chromium and iron production, and their corrosion, solve scaling problems in geothermal energy and oil production). Comparisons of solubility and activity calculations with the experimental data in binary and ternary systems indicate that model predictions are within the uncertainty of the data. Limitations of the model due to data insufficiencies are discussed. The solubility modeling approach, implemented to the Pitzer specific interaction equations is employed. The resulting parameterization was developed for the geochemical Pitzer formalism based PHREEQC database.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]. Pitzer K.S. Thermodynamics of electrolytes. I. Theoretical and general equations. J. Phys. Chem. 1973 77 268-277.

  • [2]. Pitzer K.S. Theory: ion interaction approach. In R.M. Pytkowicz (ed.) Activity coefficients in electrolyte solutions CRC Press Inc. Boca Raton Florida1979 1 157-208.

  • [3]. Harvie C.E. Weare J.H. The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-CI-SO4-H2O system from zero to high concentration at 25°C. Geochim. Cosmochim. Acta1980 44 981-997.

  • [4]. Harvie C.E. Moller N. Weare J.H. The prediction of mineral solubilities in natural waters: the Na-K-Ca-Mg-H-CI-SO4-OH-CO3-HCO3-CO2-H2O system to high ionic strength at 25°C. Geochim. Cosmochim. Acta1984 48 723-751.

  • [5]. Christov C. Thermodynamic of formation of double salts and mixed crystals from aqueous solutions. J. Chem. Thermodyn. 2005 37 1036-1060.

  • [6]. Greenberg J.P. Moller N. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250°C. Geochim. Cosmochim. Acta1989 53 2503-2518.

  • [7]. Christov C. Moller N. A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Cl-OH-HSO4-SO4-H2O system to high concentration and temperature Geochim.Cosmochim. Acta 2004 68 1309-1331.

  • [8]. Christov C. Chemical equilibrium model of solution behavior and solubility in the MgCl2-H2O and HCl-MgCl2-H2O systems to high concentration from 0°C to 100°C J. Chem. Eng. Data 2009 54 2599-2608.

  • [9]. Lassin A. Christov C. André L. Azaroual M. A thermodynamic model of aqueous electrolyte solution behavior and solid liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to a very high concentrations (40 molal) from 0° to 250°C American Journal of Science 2015 315 204-256.

  • [10]. Christov C. Dixon A. Moller N. Thermodynamic modeling of aqueous aluminum chemistry and solid liquid equilibria to high solution concentration and temperature. I. The acidic H-Al-Na-K-Cl-H2O system from 0° to 100°C J. Solution Chem. 2007 36 1495-1523.

  • [11]. Moller N. Christov C. Weare J. Thermodynamic models of aluminum silicate mineral solubility for application to enhanced geothermal systems. In Proceedings of 31th Workshop on Geothermal Reservoir Engineering Stanford University Stanford California January 30 –February 2006 1 (8 pages).

  • [12]. Moller N. Christov C. Weare J. Thermodynamic model for predicting interactions of geothermal brines with hydrothermal aluminum silicate minerals. In Proceedings of 32th Workshop on Geothermal Reservoir Engineering Stanford University Stanford California January 2007 22-24 (8 pages).

  • [13]. André L. Lassin A. Azaroual M. A methodology to estimate Pitzer’s interaction parameters. Geochim. Cosmochim. Acta2009 73(13) Suppl.1 A41.

  • [14]. Christov C. Thermodynamic study of the K-Mg-Al-Cl-SO4-H2O system at the temperature 298.15 K. CALPHAD2001 25(3) 445-454.

  • [15]. Christov C. Thermodynamics of formation of ammonium sodium and potassium alums and chromium alums CALPHAD 2002 26 85-94.

  • [16]. Christov C. Thermodynamic study of quaternary systems with participation of ammonium and sodium alums and chromium alums CALPHAD 2002 26 341-352.

  • [17]. Christov C. Thermodynamic study of the co-crystallization of ammonium sodium and potassium alums and chromium alums CALPHAD2003 27 153-160.

  • [18]. Christov C. Ivanova K. Velikova S. Tanev S. Thermodynamic study of aqueous sodium and potassium chloride and chromate systems at the temperature 298.15 K J. Chem. Thermodynamics2002 34 987-994.

  • [19]. Christov C. Thermodynamic study of the KCl-K2SO4-K2Cr2O7-H2O system at the temperature 298.15K CALPHAD1998 22 449-457.

  • [20]. Christov C. Thermodynamic study of the NaCl-Na2SO4-Na2Cr2O7-H2O system at the temperature 298.15 K CALPHAD2001 25 11-17.

  • [21]. Christov C. Pitzer ion-interaction parameters for Fe(II) and Fe(III) in the quinary {Na + K + Mg +Cl + SO4 + H2O} system at T = 298.15 K. J. Chem. Thermodyn. 2004 36 223-235.

  • [22]. Parkhurst D.L. Appelo C.A.J. User’s guide to PHREEQC (version 2) – A computer program for speciation batch-reaction one-dimensional transport and inverse geochemical calculations U.S. Geological Survey Water-Resources Investigations Report1999 99-4259.

  • [23]. Plummer L.N. Parkhurst D.L. Fleming G.W. Dunkle S.A. PHRQPITZ – A computer program incorporating Pitzer’s equations for calculation of geochemical reactions in brines. U.S. Geological Survey Water-Resources Investigations Report1988 88-4153.

  • [24]. Pitzer K.S. Thermodynamics of electrolytes. 5. Effect of higher-order electrostatic terms. J. Sol. Chem. 1975 4(3) 249-265.

  • [25]. Harvie C.E. Theoretical investigations in geochemistry and atom surface scattering. Ph.D. Thesis University of California at San Diego La Jolla Calif. (unpublished) 1982.

  • [26]. Pitzer K.S. Mayorga G. Thermodynamics of electrolytes. 3. Activity and osmotic coefficients for 2-2 electrolytes. J. Sol. Chem. 1974 3(7) 539-546.

  • [27]. Mikulin G. Voprosy Fizicheskoi Khimii Electrolytov Izd. Khimiya. 1968

  • [28]. Palmer D.A. Wesolowski D.J. Aluminum speciation and equilibria in aqueous solution: II. The solubility of gibbsite in acidic sodium chloride solutions from 30 to 70°C. Geochim. Cosmochim. Acta1992 56 1093-1111.

  • [29]. Farelo F. Fernandes C. Avelino A. Solubilities for Six Ternary Systems: NaCl+NH4Cl+H2O KCl+NH4Cl+H2O NaCl+LiCl+ H2O KCl+LiCl+H2O NaCl+AlCl3+H2O and KCl+AlCl3+H2O at T= (298 to 333) K. J. Chem. Eng. Data2005 50 1470-1477.

  • [30]. Sarkarov R.A. Mironova O.P. Solubility in the AlCl3-LiCl-NaCl-H2O System. Zh. Neorg. Khim. 1990 35 280-282.

  • [31]. Kim H.T. Frederick W.J. Evaluation of ion interaction parameters of aqueous electrolytes at 25°C. 1. Single salt parameters. J. Chem. Eng. Data1988 33 177-184.

  • [32]. Tanaka M. Tamagawa T. Hamada Y. Estimation of activities in the aqueous solution systems of HCl-CuCl2 and HCl-FeCl3 using the Pitzer method. Materials Transactions JIM1992 33(4) 391-399.

  • [33]. Millero F.J. Pierrot D. The activity coefficients of Fe(III) hydroxide complexes in NaCl and NaClO4 solutions. Geochim. Cosmochim. Acta2007 71 4825–4833.

  • [34]. Marion G.M. Kargel J.S. Catling D.C. Modeling ferrous–ferric iron chemistry with application to martian surface geochemistry. Geochim. Cosmochim. Acta2008 72 242–266.

  • [35]. André L. Christov C. Lassin A. Azaroual M. Thermodynamic behaviour of FeCl3-H2O and HCl-FeCl3-H2O systems – A Pitzer model at 25°C. Procedia Earth and Planetary Science2013 7 14-18.

  • [36]. Kangro W. Groeneveld A. Konzentrierte wäßrige Lösungen I. Z Phys Chem Neue Folge (Frankfurt am Main)1962 32 110-126.

  • [37]. Rumyantsev A.V. Hagemann S. Moog H.C. Isopiestic investigation of the systems Fe2(SO4)3–H2SO4–H2O FeCl3–H2O and Fe(III)–(Na K Mg Ca)Cln–H2O at 298.15 K Z Phys Chem2004 218 1089–1127.

  • [38]. Blanc P. Lassin A. Piantone P. THERMODDEM a database devoted to waste minerals. BRGM (Orléans France). 2007http://thermoddem.brgm.fr

  • [39]. Hinrichsen F.W. Sachsel E. Z. Physik. Chem. 1904-05 50 81-99. Data given in Linke (1965).

  • [40]. Atbir A. Boukbir L. El Hadek M. Cohen-Adad R. Etude du diagramme polythermique du système ternaire NaCl-FeCl3-H2O de 5 à 50°C. J. Therm. Anal. Calorim. 2000 62 203-209.

  • [41]. Christov C. Thermodynamic study of aqueous sodium potassium and chromium chloride systems at the temperature 298.15 K J. Chem. Thermodynamics 2003 35 909-917.

  • [42]. Malquori G. System AlCl3-KCl-HCl-H2O at 25°. Gazz. Chim. Ital. 1927 57 661-662; 665. Data given in Linke (1965).

  • [43]. Mason C. The Osmotic and Activity Coefficients of Trivalent Chlorides in Aqueous Solution at 25°. J. Amer. Chem. Soc. 1940 63 220-223.

  • [44]. Linke W. Solubilities Inorganic and Metal-Organic Compounds (4th ed.) 1965 Vols 1 and 2 American Chemical Society Washington.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 561 263 16
PDF Downloads 241 150 6