Modelling the Potential Distribution of Three Climate Zonal Tree Species for Present and Future Climate in Hungary

Open access

Abstract

The potential distribution and composition rate of beech, sessile oak and Turkey oak were investigated for present and future climates (2036-2065 and 2071-2100) in Hungary. Membership functions were defined using the current composition rate (percentage of cover in forest compartments) of the tree species and the long-term climate expressed by the Ellenberg quotient to model the present and future tree species distribution and composition rate. The simulation results using the regional climate model REMO showed significant decline of beech and sessile oak in Hungary during the 21st century. By the middle of the century only about 35% of the present beech and 75% of the sessile oak stands will remain above their current potential distribution limit. By the end of the century beech forests may almost disappear from Hungary and sessile oak will also be found only along the Southwest border and in higher mountain regions. On the contrary the present occurrences of Turkey oak will be almost entirely preserved during the century however its distribution area will shift to the current sessile oak habitats.

ALLEN, C.D. − MACALADY, A. − CHENCHOUNI, H. − BACHELET, D. − MCDOWELL, N. − VENNETIER, M. − GONZALES, P. − HOGG, T. − RIGLING, A. − BRESHEARS, D.D. − FENSHAM, R. − ZHANG, Z. − KITZBERGER, T. − LIM, J.-H. − CASTRO, J. − ALLARD, G. − RUNNING, S.W. − SEMERCI, A. − COBB, N. (2010): A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660-684.

ARAUJO, M.B. − CABEZA, M. − THUILLER, W. − HANNAH, L. − WILLIAMS, P.H. (2004): Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology 10: 1618-1626.

BARTHOLY, J. − PONGRÁCZ, R. − GELYBÓ, GY. (2007): Regional climate change expected in Hungary for 2071-2100. Applied Ecology and Environmental Research 5(1): 1-17.

BENISTON, M. - STEPHENSON D.B. − CHRISTENSEN, O.B. − FERRO, C.A.T − FREI, C. − GOYETTE, S. − HALSNAES, K. − HOLT, T. − JYLHÄ, K. − KOFFI, B. − PALUTIKOF, J. − SCHÖLL, R. − SEMMLER, T. - WOTH, K. (2007): Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change 81: 71-95 doi: 10.1007/s10584-006-9226-z.

BERKI, I. - RASZTOVITS, E. - MÓRICZ, N. - MÁTYÁS, CS. (2009): Determination of the drought tolerance limit of beech forests and forecasting their future distribution in Hungary. Cereal Research Communications 37: 613-616.

BRÉDA, N. - HUC, R. - GRANIER, A. - DREYER, E. (2006): Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science 63: 625-644.

CZÚCZ, B. − GÁLHIDY, L. − MÁTYÁS, CS. (2010): Limiting climating factors and potential future distribution of beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Mattuscha) Liebl.) forests near their low altitude - xeric limit in Central Europe. Annals of Forest Science 68(1): 99-108.

DEFINIENS (2005): eCognition Professional, Munich.

FÜHRER, E. − HORVÁTH, L. − JAGODICS, A. − MACHON, A. - SZABADOS, I. (2011): Application of a new aridity index in Hungarian forestry practice. Időjárás 115 (3): 205-216.

FÜHRER, E. − JAGODICS, A. - JUHASZ, I. − MAROSI, GY. − HORVÁTH, L. (2011): Ecological and economical impacts of climate change on Hungarian forestry practice. Időjárás 117 (2): 159-174.

GÁLOS B. - LORENZ P.H. - JACOB, D. (2007): Will dry events occur more often in Hungary in the future? Environmental Research Letters 2 034006 (9 pp.) GUISAN, A. − ZIMMERMANN, N.E. (2000): Predictive habitat distribution models in ecology.Ecological Modeling 135: 147-186.

HOGG, E.H. − BRANDT, J.P. − KOCHTUBAJDA, B. (2005): Factors affecting interannual variation in growth of western Canadian aspen forests during 1951-2000. Canadian Journal of Forest Research 35: 610-622.

IPCC − Summary for Policymakers. - In: Climate Change (2007): The Physical Science Basis.Contribution of Working Group I. [Solomon, S. - Manning, Q.D. - Chen, M. - Marquis, Z. - Averyt, M.K.B.- Miller, H.L. (eds.)]. Cambridge University Press, Cambridge, New York.

JACOB, D. - ANDRAE, U. - ELGERED, G. - FORTELIUS, C. - GRAHAM, L.P. - JACKSON, S.D. - KARSTENS, U. - KOEPKEN, C. - LINDAU, R. - PODZUN, R. - ROCKEL, B. - RUBEL, F. - SASS, H.B. - SMITH, R.N.D. − VAN DEN HURK, B.J.J.M. - YANG, X. (2001): A comprehensive model intercomparison study investigating the water budget during the BALTEX-PIDCAP Period.Meteorology and Atmospheric Physics 77 (1-4): 19-43.

JACOB, D. - BÄRRING, L. - CHRISTENSEN, O.B. - CHRISTENSEN, J.H. − DE CASTRO, M. - DÉQUÉ, M. - GIORGI, F. - HAGEMANN, S. - HIRSCHI, M. - JONES, R. - KJELLSTRÖM, E. - LENDERINK, G. - ROCKEL, B. - SÁNCHEZ, E. - SCHÄR, C. - SENEVIRATNE, S.I. - SOMMOT, S. − VAN ULDEN, A. − VAN DEN HURK, B. (2007): An inter-comparison of regional climate models for Europe: model performance in present-day climate. Climatic Change 81:31-52. doi:10.1007/s10584-006-9213-4.

KOSKELA, J. − BUCK, A. − TEISSIER DU CROS, E. (eds.) (2007): Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Biodiversity International, Rome, Italy.

KRAMER, K. − DEGEN, B. − BUSCHBOM, J. − HICKLER, T. − THUILLER, W. − SYKES, M. − DE WINTER, W. (2010): Modeling exploration of the future of European beech (Fagus sylvatica L.) under climate change - Range, abundance, genetic diversity and adaptive response. Forest Ecology and Management 259: 2213-2222.

LAKATOS, F. − MOLNÁR, M. (2009): Mass mortality of beech on Southwest Hungary. Acta Silvatica& Lignaria Hungarica 5: 75-82.

LINDNER, M. − MAROSCHEK, M. − NETHERER, S. − KREMER, A. − BARBATI, A. − GARCIA-GONZALO, J. − SEIDL, R. − DELZON, S. − CORONA, P. − KOLSTROM, M. − LEXER, M.J. − MARCHETTI, M. (2010): Climate change impacts adaptive capacity and vulnerability of European forest ecosystems.Forest Ecology Management 259 (4): 698-709.

LOEHLE, CS. (1998): Height growth tradeoffs determine northern and southern range limits for trees.Journal of Biogeography 25: 735-742.

MÁTYÁS, CS. (2007): What do field trials tell about the future use of forest reproductive material? In: Koskela, J, Buck A. and Teissier du Cros, E. (eds.): Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Biodiversity International, Rome, Italy. pp. 53-69. MÁTYÁS, CS. − NAGY, L. − UJVÁRI-JÁRMAY, É. (2008): Genetic background of response of trees to aridification at the xeric forest limit and consequences for bioclimatic modeling. In: Strelcova K, Mátyás Cs, Kleidon A (eds.) Bioclimatology and natural hazards. Springer Verlag, Berlin pp. 179-196.

MÁTYÁS, CS. − VENDRAMIN, G.G. − FADY, B. (2009): Forests at the limit: evolutionary-genetic consequences of environmental changes at the receding (xeric) edge of distribution. Annals of Forest Science 66: 800-80.

MÁTYÁS, CS. (2010). Forecasts needed for retreating forests (Opinion). Nature 464: 1271

OHLEMÜLLER, R. − GRITTI, E.S. − SYKES, M.T. − THOMAS, C.D. (2006): Quantifying components of risk for European woody species under climate change. Global Change Biology 12: 1788-1799.

PÉCZELY, GY. (1979): Éghajlattan. Climatology - in Hungarian. Nemzeti Tankönyvkiadó, Budapest.

PEARSON, R. G. - DAWSON, T. P. (2003): Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global Ecology and Biogeography 12 (5): 361-371.

PENUELAS, J. - OGAYA, R. - BOADA, M. - JUMP, A.S. (2007): Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30: 829-837.

RASZTOVITS, E. − MÓRICZ, N. − BERKI, I. − PÖTZELSBERGER E. − MÁTYÁS CS. (2012): Evaluating the performance of stochastic distribution models for European beech at low-elevation xeric limits.Időjárás 116(3): 173-194.

REHFELDT, G.E. − TCHEBAKOVA, N.M. − MILYUTIN, L.I. − PARFENOVA, E.I. − WYKOFF, W.R. − KOUZMINA, N.A. (2003): Assessing population responses to climate in Pinus silvestris and Larix spp. of Eurasia with climate transfer models. Eurasian Journal of Forestry Research 6: 83-98.

RENNENBERG, H. - SEILER, W. - MATYSSEK, R. - GESSLER, A. - KREUZWIESER, J. (2004): Die Buche (Fagus sylvatica L.) - ein Waldbaum ohne Zukunft im südlichen Mitteleuropa? Allgemeine Forst- und Jagdzeitung 175: 210-224.

RICKEBUSCH, S. − GELLRICH, M. − LISCHKE, H. − GUISAN, A. − ZIMMERMANN, N.E. (2007): Combining probabilistic land-use change and tree population dynamics modeling to simulate responses in mountain forests. Ecological Modeling 209: 157-168.

SCHÄR, C. − VIDALE P.L. − LÜTHI, D. − FREI, C. − HÄBERLI, C. − LINIGER, M.A. − APPENZELLER, C. (2004): The role of increasing temperature variability in European summer heatwaves. Nature 427: 332-336 doi: 10.1038/nature02300.

STOJANOVIC, D.B. − KRZIC, A. − MATOVIC, B. − ORLOVIC, S. − DUPUTIE, A. − DJURDJEVIC, V. − GALIC, Z. − STOJNIC, S. (2013): Prediction of the European beech (Fagus sylvatica L.) xeric limit using a regional climate model: An example from southeast Europe. Agricultural and Forest Meteorology 176: 94-103.

THUILLER, W. − LAVOREL, S. − ARAUJO, M.B. − SYKES, M.T. − PRENTICE, I.C. (2005): Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences 102: 8245-8250.

Acta Silvatica et Lignaria Hungarica

The Journal of University of West Hungary

Journal Information


CiteScore 2017: 0.22

SCImago Journal Rank (SJR) 2017: 0.136
Source Normalized Impact per Paper (SNIP) 2017: 0.159

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 60 60 5
PDF Downloads 25 25 4