The Thermal Insulation Capacity of Tree Bark

Open access


Nowadays increasing emphasis is placed on improving the quality of different insulation materials, and on developing such from materials of natural origin. The present research focuses on the thermal insulation capacity of the chipped bark of different broadleaved and coniferous wood species. We examined the bark of five tree species: black locust, a poplar clone, larch, spruce, and Scotch pine and compared their insulation characteristics to the traditionally used insulation materials. Results indicate that the thermal insulation capacity of chipped tree bark is comparable to that of generally used insulation materials, such as glass wool. Moisture content influences the thermal insulation capacity of chipped bark of the five examined species. Since energy requirement of producing chipped tree bark is very low, and it contributes also to storing carbon, therefore its CO2 balance is more advantageous compared to that of traditional fibrous or foamy insulation materials.


A fakéreg hőszigetelési tulajdonságai Manapság egyre nagyobb hangsúlyt fektetnek a különböző szigetelőanyagok javítására. A tanulmány bemutatja a különböző lombos- és tűlevelű fafajok kérgének hőszigetelő képességét. Öt fafajt vizsgáltunk meg: az akácot, a Pannonia nyár klónt, az erdeifenyőt, a vörösfenyőt és a lucfenyőt. A tanulmány mind a kezdő nedvességtartalmú, mind a 12%-os nedvességtartalomra szárított kérgeket vizsgálja. A kutatás megmutatta, hogy a fakéreg hasonló hőszigetelési tulajdonságokkal rendelkezik, mint más, általánosan használt szigetelő anyagok. A fakéreg feldolgozása alacsony energiafelhasználással jár és CO2 mérlege is lényegesen jobb, mint a hagyományos szigetelő anyagok.


  • BAUER, G. - SPECK, T. - BLÖMER, J. - BERTLING, J. - SPECK, O. (2010): Insulation capability of the bark of trees with different fire adaptation. J Mater Sci 45:5950-5959

  • BÖRJESSON, P. - GUSTAVSSON, L. (2000): Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives. Energy Policy 28 575-588

  • BUCHANAN, A. H. - LEVINE, A.B. (1999): Wood-based building materials and atmospheric carbon emissions. Environ. Sci. Policy 2, 427-437.

  • COLORADO MASTER GARDENERS PROGRAM (2009): Mulching with Wood/Bark Chips. Grass Clippings, and Rock, Colorado State University Extension

  • DIMITRI, L. (1968): Untersuchungen über den Einfluß des Wassergehaltes, der Rindendicke und der Darrdichte auf die Wärmeleitung der Buchenrinde. Holz als Roh und Werkstoff 26(3):95-100

  • FREIRE, C.S.R. - SILVESTRE, A.J.D. - PASCOAL, N.C. - CAVALEIRO, J.A.S. (2002): Lipophilic extractives of the inner and outer barks of Eucalyptus globulus. Holzforschung 56(4):372-379

  • GRYC, V. - VAVRČÍK, H. - ŠLEZINGEROVÁ, J. - KOŇAS, P. (2010): Basic density of spruce wood, wood with bark, and bark of branches in locations in the Czech Republic. TRACE - Tree Rings in Archaeology, Climatology and Ecology, Vol. 8: Proceedings of the DENDROSYMPOSIUM 2009, April 16th - 19th 2009, Otočec, Slovenia. GFZ Potsdam, Scientific Technical Report STR 10/05, Potsdam : 151 - 156.

  • GUSTAVSSON, L. - SATHRE, R. (2006): Variability in energy and carbon dioxide balances of wood and concrete building materials. Building and Environment 41 940-951

  • HARKIN, J.M. - ROWE, J.W. (1971): Bark and its possible uses. Research note FPL, 091 56 p

  • HOONG, Y.B. - PARIDAH, M.T. - LOH, Y.F. - JALALUDDIN, H. - CHUAH, L.A. (2011): A new source of natural adhesive: Acacia mangium bark extracts co-polymerized with phenol-formaldehyde(PF) for bonding Mempisang (Annonaceae spp.) veneers. International Journal of Adhesion & Adhesives 31 (2011) 164-167

  • MACFARLANE, D.W. - LUO, A. (2009): Quantifying tree and forest bark structure with a bark-fissure index. Can. J. For. Res. 39: 1859-1870

  • MOLNÁR, S. (2004): Faanyagismeret [Wood Science]. Szaktudás Kiadó, Budapest (in Hungarian)

  • PEDIEU, R. - RIEDL, B. - PICHETTE, A. (2009): Properties of mixed particle boards based on white birch (Betula papyrifera) inner bark particles and reinforced with wood fibres. Eur. J. Wood Prod. 67: 95-101

  • RAGLAND, K.W. - AERTS, D.J. - BAKER, A.J. (1991): Properties of Wood for Combustion Analysis.Bioresource Technology 37: 161-168

  • SKOGSBERG, K. - LUNDBERG, A. (2005): Wood chips as thermal insulation of snow, Cold Regions Science and Technology 43: 207- 218

  • SO, C.L. - EBERHARDT, T.L. (2006): Rapid analysis of inner and outer bark composition of Southern Yellow Pine bark from industrial sources. Holz als Roh- und Werkstoff 64: 463-467

  • SOPP, L. - KOLOZS, L. (2000): Fatömeg-számítási táblázatok [Wood volume tables]. Állami Erdészeti Szolgálat, Budapest pp 24-27 (in Hungarian)

  • WANG, G.G. - WANGEN, S.R. (2011): Does frequent burning affect longleaf pine (Pinus palustris) bark thickness? Can. J. For. Res. 41: 1562-1565

Acta Silvatica et Lignaria Hungarica

The Journal of University of West Hungary

Journal Information

CiteScore 2016: 0.50

SCImago Journal Rank (SJR) 2016: 0.241
Source Normalized Impact per Paper (SNIP) 2016: 0.460


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 16
PDF Downloads 7 7 5