Performance of Absolute Real-Time Multi-GNSS Kinematic Positioning

Open access


Recently, we observe the rapid development of the Global Navigational Satellite Systems (GNSS), including autonomous positioning techniques, such as Precise Point Positioning (PPP). The GNSS have different conceptions, different spacecraft and use different types of orbits which is why the quality of real-time orbit and clock products is inconsistent, thus, the appropriate approach of the multi-GNSS observation processing is needed to optimize the solution quality. In this paper, the kinematic field experiment is conducted in order to examine multi-GNSS real-time Standard Point Positioning (SPP) and PPP performance. The test was performed on the 26 km-long car route through villages, forests, the city of Wrocław, crossing under viaducts and a high tension line. For the first time, the solution is based on GPS + GLONASS + Galileo + BeiDou observations using streamed corrections for orbits and clocks with two different weighting scenarios. Thanks to the usage of the multi-GNSS constellation the number of positioning epochs possible to determine increases by 10%. The results show also that the appropriate weighting approach can improve the root mean square error in the SPP solution by about 13% and 42% for the horizontal and vertical coordinate components, respectively. In the case of PPP, the maximum quality improvement equals 70% for the horizontal component and the results for the vertical component are comparable with those obtained for the GPS-only solution.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aughey RJ. and Falloon C (2010). Real-time versus post-game GPS data in team sports Journal of Science and Medicine in Sport 13 348–349 doi: 10.1016/j.jsams.2009.01.006

  • Bisnath S. and Gao Y (2009). Current State of Precise Point Positioning and Future Prospects and Limitations. In: Observing our Changing Earth. Springer Berlin Heidelberg Berlin Heidelberg pp 615–623

  • Dow JM. Neilan RE. and Rizos C (2009). The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod. 83:191–198

  • Geng J. Teferle FN. Meng X. and Dodson AH (2010). Kinematic precise point positioning at remote marine platforms GPS Solutions 14 343–350 doi: 10.1007/s10291-009-0157-9

  • Groves PD (2011). Shadow matching: A new GNSS positioning technique for urban canyons Journal of Navigation 64 417–430 doi: 10.1017/S0373463311000087

  • Guo J. Li X. Li Z. Hu L. Yang G. Zhao C. Fairbairn D. Watson D. and Ge M (2018). Multi-GNSS precise point positioning for precision agriculture Precision Agriculture 1–17 doi: 10.1007/s11119-018-9563-8

  • Hadas T (2015). GNSS-Warp Software for Real-Time Precise Point Positioning Artificial Satellites 50 59–76 doi: 10.1515/arsa-2015-0005

  • Hadas T. and Bosy J (2015). IGS RTS precise orbits and clocks verification and quality degradation over time GPS Solutions 19 93–105 doi: 10.1007/s10291-014-0369-5

  • Hadas T. Teferle FN. Kazmierski K. Hordyniec P. and Bosy J (2017). Optimum stochastic modeling for GNSS tropospheric delay estimation in real-time GPS Solutions 21 1069–1081 doi: 10.1007/s10291-016-0595-0

  • He H. Li J. Yang Y. Xu J. Guo H. and Wang A (2014). Performance assessment of single-and dual-frequency BeiDou/GPS single-epoch kinematic positioning GPS Solutions 18 393–403 doi: 10.1007/s10291-013-0339-3

  • Hernández-Pajares M. Juan JM. Sanz J. Orús R. García-Rodríguez A. and Colombo OL (2004). Wide area real time kinematics with Galileo and GPS signals. In: 17th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GNSS 2004. pp 2541–2554

  • Héroux P. Gao Y. Kouba J. and Lahaye F (2004). Products and applications for Precise Point Positioning-Moving towards real-time. In: Proc. ION ITM 2004 Institute of Navigation Long Beach CA USA September 21 - 24. pp 1832–1843

  • Hu Y. Cheng L. and Wang X (2016). Quality analysis of the campaign GPS stations observation in Northeast and North China. doi: 10.1016/j.geog.2016.03.008

  • IGS (2015). RTCM-SC104 RINEX-The Receiver Independent Exchange Format (Version 3.03)

  • Kazmierski K. Hadas T. and Sośnica K (2018a). Weighting of Multi-GNSS Observations in Real-Time Precise Point Positioning Remote Sensing 10 84 doi: 10.3390/rs10010084

  • Kazmierski K. Sośnica K. and Hadas T (2018b). Quality assessment of multi-GNSS orbits and clocks for real-time precise point positioning GPS Solutions 22 11 doi: 10.1007/s10291-017-0678-6

  • Knoop VL. de Bakker PF. Tiberius CCJM. and van Arem B (2017). Lane Determination With GPS Precise Point Positioning IEEE Transactions on Intelligent Transportation Systems 18 2503–2513 doi: 10.1109/TITS.2016.2632751

  • Kouba J (2015). A Guide to using international GNSS Service (IGS) Products Geodetic Survey Division Natural Resources Canada Ottawa 6 34

  • Lachapelle G. Casey M. Eaton M. Kleusberg A. Tranquilla J. and Wells D (1987). GPS Marine Kinematic Positioning Accuracy and Reliability. In: Proceedings International Symposium on Marine Positioning. Springer Netherlands Dordrecht pp 113–147

  • Laurichesse D (2011). The CNES Real-time PPP with undifferenced integer ambiguity resolution demonstrator. In: ION GNSS. Portland

  • Leandro RF. Langley RB. and Santos MC (2008). UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques GPS Solutions 12 65–70 doi: 10.1007/s10291-007-0077-5

  • Loyer S. Perosanz F. Mercier F. Capdeville H. and Marty J-C (2012). Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center Journal of Geodesy 86 991–1003 doi: 10.1007/s00190-012-0559-2

  • Martín A. Anquela AB. Dimas-Pagés A. and Cos-Gayón F (2015). Validation of performance of real-time kinematic PPP. A possible tool for deformation monitoring Measurement 69 95–108 doi: 10.1016/J.MEASUREMENT.2015.03.026

  • Martinez FG. and Waller P (2009). GNSS clock prediction and integrity. In: 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum. IEEE pp 1137–1142

  • Montenbruck O. Steigenberger P. Khachikyan R. Weber G. Langley R. Mervart L. and Hugentobler U (2014). IGS-MGEX Preparing the Ground for Multi-COnstellation GNSS Science Inside GNSS 42–49

  • Paziewski J. Sieradzki R. and Baryla R (2018). Multi-GNSS high-rate RTK PPP and novel direct phase observation processing method: application to precise dynamic displacement detection Measurement Science and Technology 29 35002 doi: 10.1088/1361-6501/aa9ec2

  • Petit G. and Luzum B (2010). IERS Conventions Bureau International Des Poids Et Mesures Sevres (France) ISBN 3-898 179

  • Prange L. Orliac E. Dach R. Arnold D. Beutler G. Schaer S. and Jäggi A (2017). CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis Journal of Geodesy 91 345–360 doi: 10.1007/s00190-016-0968-8

  • Realini E. Caldera S. Pertusini L. and Sampietro D (2017). Precise GNSS Positioning Using Smart Devices Sensors 17 2434 doi: 10.3390/s17102434

  • Rieke M. Foerster T. Geipel J. and Prinz T (2011). High-precision positioning and real-time data processing of UAV systems International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences 28 6 doi: 10.5194/isprsarchives-XXXVIII-1-C22-119-2011

  • Rietdorf A. Daub C. and Loef P (2006). Precise Positioning in Real-Time using Navigation Satellites and Telecommunication Procedings of the 3rd Workshop on Positioning Navigation and Communication 123–128

  • Tang X. Roberts GW. Li X. and Hancock CM (2017). Real-time kinematic PPP GPS for structure monitoring applied on the Severn Suspension Bridge UK Advances in Space Research 60 925–937 doi: 10.1016/J.ASR.2017.05.010

  • Tayari E. Jamshid AR. and Goodarzi HR (2015). Role of GPS and GIS in precision agriculture Journal of Scientific Research and Development 2 157–162

  • Teunissen PJG. and Montenbruck O (eds) (2017). Springer Handbook of Global Navigation Satellite Systems. Springer International Publishing Cham

  • Tomoji T (2007). RTKLIB: An open source program package for GNSS positioning

  • Wang L. Li Z. Ge M. Neitzel F. Wang Z. and Yuan H (2018). Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service Remote Sensing 10 337 doi: 10.3390/rs10020337

  • Weber G. and Mervart L (2009). The BKG Ntrip Client (BNC). Mitteilungen des Bundesamtes fuer Kartographie und Geod

  • Xu G (2016). GPS: Theory algorithms and applications Third edit

  • Yang F. Li L. Zhao L. and Cheng C (2017). GPS/BDS Real-Time Precise Point Positioning for Kinematic Maritime Positioning. Springer Singapore pp 295–307

  • Zumberge JF. Heflin MB. Jefferson DC. Watkins MM. and Webb FH (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks Journal of Geophysical Research: Solid Earth 102 5005–5017 doi: 10.1029/96JB03860

Journal information
Impact Factor

CiteScore 2018: 0.61

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.728

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 674 433 20
PDF Downloads 416 258 19