Cite

Commonly, relative GPS positioning technique is used in Egypt for precise positioning applications. However, the requirement of a reference station is usually problematic for some applications as it limits the operational range of the system and increases the system cost and complexity On the other hand; the single point positioning is traditionally used for low accuracy applications such as land vehicle navigation with positioning accuracy up to 10 meters in some scenarios which caused navigation problems especially in downtown areas. Recently, high positioning accuracy can be obtained through Precise Point Positioning (PPP) technique in which only once GNSS receiver is used. However, the major drawback of PPP is the long convergence time to reach to the surveying grade accuracy compared to the existing relative techniques. Moreover, the PPP accuracy is significantly degraded due to shortage in satellite availability in urban areas. To overcome these limitations, the quad constellation GNSS systems namely; GPS.GLONASS, Galileo and BeiDou can be combined to increase the satellite availability and enhance the satellite geometry which in turn reduces the convergence time. In Egypt, at the moment, the signals of both Galileo and BeiDou could be logged with limited number of satellites up to four and six satellites for both Systems respectively. In this paper, we investigated the performance of the Quad-GNSS positioning in both dual- and single-frequency ionosphere free PPP modes for both high accurate and low cost navigation application, respectively. The performance of the developed PPP models will be investigated through GNSS data sets collected at three Egyptian cities namely, Cairo, Alexandria and Aswan.

eISSN:
2083-6104
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other