Hydrological Excitations of Polar Motion Derived from Different Variables of Fgoals − g2 Climate Model

Abstract

The hydrological contribution to decadal, inter-annual and multi-annual suppress polar motion derived from climate model as well as from GRACE (Gravity Recovery and Climate Experiment) data is discussed here for the period 2002.3-2016.0. The data set used here are Earth Orientation Parameters Combined 04 (EOP C04), Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2 (FGOAL-g2) and Global Land Data Assimilation System (GLDAS) climate models and GRACE CSR RL05 data for polar motion, hydrological and gravimetric excitation, respectively. Several Hydrological Angular Momentum (HAM) functions are calculated here from the selected variables: precipitation, evaporation, runoff, soil moisture, accumulated snow of the FGOALS and GLDAS climate models as well as from the global mass change fields from GRACE data provided by the International Earth Rotation and Reference System Service (IERS) Global Geophysical Fluids Center (GGFC).

The contribution of different HAM excitation functions to achieve the full agreement between geodetic observations and geophysical excitation functions of polar motion is studied here.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Barnes R. T. H., Hide R., White A. A. and Wilson C. A. (1983). Atmospheric Angular Momentum Fluctuations, Length-of-Day Changes and Polar Motion Proc. R. Soc. Lond. A 1983 387 31-73;DOI: 10.1098/rspa.1983.0050. Published 9 May 1983

  • Bizouard C., and Gambis D. (2009). The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2005 In: H. Drewes (ed.), Geodetic Reference Frames, IAG Symposium Munich, Germany October 9-14, 2006, Springer, Berlin 265-270.

  • Brzezinski A., Nastula J., Kolaczek B., and Ponte R. M. (2005). Oceanic excitation of polar motion from interseasonal to decadal periods, In A window on the Future Geodesy ed. F. Sanso, IAG Symposia, Vol. 128, Springer Verlag, Berlin Heidelberg, 591-596.

  • Brzezinski A., Nastula J., and Kolaczek B. (2005) Seasonal excitation of polar motion estimated from recent geophysical models and observations J. Geodyn., 48, 235-240, doi: 10.1016/j.jog.2009.09.021.

  • Chao B. F., and Au A. Y. (1991). Atmospheric excitation of the Earth’s annual wobble: 1980-1988, J. Geophys. Res., 96, 6577-6582, doi:10.1029/91JB00041.

  • Chao B. F., and O’Connor W. P. (1988). Global surface water-induced seasonal variations in the Earth’s rotation and gravitational field, Geophys. J., 94,263-270, doi:10.1111/j.1365-246x.1988.tb05900.x.

  • Chen J. L., Wilson C. R., Chao B. F., Shum C. K., and Tapley B. D. (2000). Hydrologic and oceanic excitation to polar motion and length-of-day variation, Geophys. J. Int, 141(1), 149-156. Doi:10.1046/j.1365-246X.2000.00069.x.

  • Chen J. L., Wilson C. R., Tapley B. D., and Ries J. C. (2004). Low degree gravitational changes from GRACE: validation and interpretation, Geophys. Res. Lett., 31(22):L22607 Doi:10.1029/2004GL021670.

  • Chen J. L., and Wilson C. R. (2005). Hydrological excitation of polar motion, 1993-2002, Geophys. J. Int, 160, 833-839, doi:10.1029/2003GL018688.

  • Chen J. L., Wilson C. R., Ries J. C. and Tapley B. D. (2013). Rapid ice melting drives Earth’s pole to the east, Geophys. Research Lettres, 40, 2625–2630, doi:10.1002/grl.50552.

  • Cooper G. R. J., and Cowan D. R. (2008). Comparing time series using wavelet-based semblance analysis, Computer Geosciences, 34, 95-102, doi:10.1016/j.cageo.2007.03.009.

  • Dickey J. O., Marcus S. L., Johns C. M., Hide R., and Thompson S. R. (1993). The oceanic contribution to the Earth’s seasonal angular momentum budget, Geophys. Res. Lett., 20, 2953-2956, doi:10.1029/93GL03186.

  • Dobslaw H., Dill R., Groetzsch A., Brzezinski A., and Thomas M. (2010). Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere, J. Geophys. Res., doi:10.1029/2009JB007127.

  • Eubanks T. M. (1993). Variations in the Orientation of the Earth, In: D. E. Smith and D. L. Turcotte (eds.), Contributions of Space Geodesy to Geodynamics: Earth Dynamics, American Geophysical Union, Washington, DOI: 10.1029/GD024p0001.

  • Gross R. S., Fukumori I., and Menemenlis D. (2003). Atmospheric and oceanic excitation of the Earth’s wobbles during 1980-2000, J. Geophys. Res., 108(B8), 2370, doi:10.1029/2002JB002143.

  • Güntner A. (2008). Improvement of global hydrological models using GRACE data, Surv. Geophys., 29(4-5):357-397.

  • Hinnov L. A., and Wilson C. R. (1987) An estimate of water storage to the excitation of polar motion, Geophys. J. R. Astr. Soc., 88,437-459.

  • Van Hylckama T. E. A. (1970). Water balance and Earth unbalance, International Associations of Scientific Hydrology, Proc. Reading Symp.WorldWater Balance, AIHS-UNESCO, vol. 92, 434-444.

  • Jin S. G., Chambers P., and Tapley D. (2010). Hydrological and oceanic effects on polar motion from GRACE and models, Journal of Geophysical Research, doi:10.1029/2009JB006635.

  • Jin S. G., Hassan A., and Feng G., P. (2012). Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models, Journal of Geodynamics, 62, 40-48, Earth Rotation, Edited by R. Gross, H. Schuh and Cheng-Li Huang, doi:10.1016/j.jog.2012.01.009.

  • Kolaczek B., Nuzhidina M., Nastula J., and Kosek W., (2000). El Niño impact on atmospheric polar motion excitation, Journal of Geophysical Research B, vol. 105, no. 2, pp. 3081-3087.

  • Kosek W., (1995). Time variable band pass filter spectra of real and complex-valued polar motion series, Artif. Satell. Planet. Geod., 30(1), 283-299.

  • Kuehne J. and Wilson C. R. (1991). Terrestrial water storage and polar motion, J. Geophys. Res., 96, 4337-4345.

  • Lettenmaier, D. P., and Famiglietti J. S. (2006). Hydrology: Water from on high, Nature, 444, 562-563, doi:10.1038/444562a.

  • Li L. J., and Coauthors, (2013). The Flexible Global Ocean-Atmosphere+Land System Model, Grid-point Version 2.0: FGOALS-g2, Adv. Atmos. Sci., 30(3), 543-560, doi: 10.1007/s00376-012-2140-6.

  • Meyrath, T. and van Dam, T. and Weigelt, M. and Cheng, M. (2013). An assessment of degree-2 Stokes coefficients from Earth rotation data, 323 pp., Geophysical Journal International, 1, vol. 195, 249–259, doi: 10.1093/gji/ggt263

  • Munk W. H. and MacDonald G. J. F. (1960). The rotation of the Earth, 323 pp., Cambridge University Press, New York.

  • Nastula J. and Ponte R. M. (1999). Further evidence of oceanic excitation of polar motion, Geoph. J. Int., 139, 1, 123-130, doi: 10.1046/j.1365-246X.1999.00930.x.

  • Nastula J., Ponte R. M., and Salstein D. (2007). Comparison of polar motion excitation series derived from GRACE and from analyses of geophysical fluids, Geophys Res. Lett., doi: 10.1029/2006GL028983.

  • Nastula J., Pasnicka M., and Kolaczek B. (2011). Comparison of the geophysical excitations of polar motion from the period: 1980.02009.0, Acta Geophysica, 59(3),561-577, doi: 10.2478/s11600-011-0008-2.

  • Nastula J., Salstein A., D. (2012). Regional Geophysical Excitation Functions of Polar Motion over Land Areas, S. Kenyon et al. (eds.), Geodesy for Plane Earth, Internationa Association of Geodesy Symposia 136, doi: 10.1007/978-3-642-20338-1_59.

  • Nastula J., Salstein A., D., and Popinski W. (2015). Hydrological Excitations of Polar Motion from GRACE Gravity Field Solutions International Association of Geodesy Symposia, doi: 10.1007/1345_2015_85.

  • Oleson K., W., and Coauthors (2004). Technical description of the community land model (CLM), NCAR/TN-461+STR, 174 pp.

  • Ponte R. M., Stammer D., and Marshall J. (1998). Oceanic signals in observed motions of the Earth’s pole of rotation, Nature, 391, 476479, doi:10.1038/35126.

  • Rodell M., Beaudoing K. H. (2007). GLDAS Noah Land Surface Model L4 monthly 1.0 x 1.0 degree Version 2.0, version 020, Greenbelt, Maryland, USA:Goddard Earth Sciences Data and Information Services Center (GES DISC), doi:10.5067/QN80TO7ZHFJZ.

  • Salstein D. A., Rosen R. D., Kann D. M., and Miller A. J. (1993). The Sub-bureau for Atmospheric Angular Momentum of the International Earth Rotation Service: A Meteorological Data Center with Geodetic Applications, Bull. Amer. Meteor. Soc., 74, 67-80, doi : http://dx.doi.org/10.1175/1520−0477(1993)074<0067:TSBFAA>2.0.CO; 2.

  • Seoane L., Nastula J. Bizouard C., and Gambis D. (2009). The use of gravimetric data from GRACE mission in the understanding of polar motion variations, Geophys. J. Int., 178:614-622, doi: 10.1111/j.1365-246X.2009.04181.x.

  • Seoane L., Nastula J. Bizouard C., and Gambis D. (2011). Hydrological Excitation of Polar Motion Derived from GRACE Gravity Field Solutions, International Journal of Geophysical, 2011, Article ID 174396, 10 pages, 2011, doi:10.1155/2011/174396.

  • Seitz F., Schmidt M. (2005). Atmospheric and oceanic contributions to Chandler wobble excitation determined by wavelet filtering, Journal Geophysical Res., 110:B11406, doi: 10.1029/2005JB003826.

  • Wahr J. and Molenaar M. (1998). Time variability of the Earth’s gravity field: Hydrological and oceanic effect and their possible detection using GRACE, J. Geophys. Res., 103, 30, 205-30,230, doi:10.1029/98JB02844.

  • Wahr J. (1983). The effects of the atmosphere and oceans on the Earth’s wobble and on the seasonal variations in the length of day: II Results, Geophys. J. R. Astron. Soc., 74, 451-487.

OPEN ACCESS

Journal + Issues

Search