From Tensor to Vector of Gravitation

Open access

ABSTRACT

Different gravitational force models are used for determining the satellites’ orbits. The satellite gravity gradiometry (SGG) data contain this gravitational information and the satellite accelerations can be determined from them. In this study, we present that amongst the elements of the gravitational tensor in the local north-oriented frame, all of the elements are suitable for this purpose except Txy. Three integral formulae with the same kernel function are presented for recovering the accelerations from the SGG data. The kernel of these integrals is well-behaving which means that the contribution of the far-zone data is not very significant to their integration results; but this contribution is also dependent on the type of the data being integrated. Our numerical studies show that the standard deviations of the differences between the accelerations recovered from Tzz, Txz and Tzy and those computed by an existing Earth´s gravity model reduce by increasing the cap size of integration. However, their root mean squared errors increase for recovering Ty from Tyz. Larger cap sizes than 5 on is recommended for recovering Tx and Tz but smaller ones for Ty.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bobojć A. and Drożyner A. (2003) Satellite orbit determination using satellite gravity gradiometry observations in GOCE mission perspective Advances in Geosciences 1 109-112.

  • Bouman J. and Koop R. (2003) Error assessment of GOCE SGG data using along track interpolation Advances in Geosciences 1 27-32.

  • Bouman J. Koop R. Haagmans R. Mueller J. Sneeuw N. Tscherning C.C. and Visser P. (2003) Calibration and validation of GOCE gravity gradients Paper presented at IUGG meeting pp. 1-6.

  • Bouman J. Koop R. Tscherning C. C. and Visser P. (2004) Calibration of GOCE SGG data using high-low STT terrestrial gravity data and global gravity field models Journal of Geodesy 78 124-137.

  • Bouman J. Fiorot S. Fuchs M. Gruber T. Schrama E. Tscherning C. Veicherts M. Visser P. (2011) GOCE gravitational gradients along the orbit Journal of Geodesy 85 791-805.

  • de Min E. (1994) On the numerical evaluation of Stokes’s integral International Geoid Service Bulletin 3 41-46.

  • ESA (1999) Gravity Field and Steady-State Ocean Circulation Mission ESA SP-1233(1) Report for mission selection of the four candidate earth explorer missions. ESA Publications Division pp. 217 July 1999.

  • Eshagh M. (2003) Precise orbit determination of a low Earth orbiting satellite MSc thesis K. N. Toosi University of Technology Tehran Iran.

  • Eshagh M. (2005) Step-variable numerical orbit integration of a low Earth orbiting satellite Journal of the Earth & Space Physics 31 1 1-12.

  • Eshagh M. (2008) Non-singular expression for the vector and gradient tensor of gravitation in a geocentric spherical frame Computers & Geosciences 34 1762-1768.

  • Eshagh M. (2009a) Orbit integration in non-inertial frames Journal of the Earth & Space Physics 35 1 1-8.

  • Eshagh M. (2009b) Alternative expressions for gravity gradients in local-north oriented frame and tensor spherical harmonics Acta Geophysica 58 215-243.

  • Eshagh M. (2010a) Least-squares modification of extended Stokes’ formula and its secondorder radial derivative for validation of satellite gravity gradiometry data Journal of Geodynamics 49 92-104.

  • Eshagh M. (2010b) Towards validation of satellite gradiometric data using modified version of 2nd order partial derivatives of extended Stokes’ formula Artificial Satellites 44 4 103-129.

  • Eshagh M. (2011a) Semi-stochastic modification of second-order radial derivative of Abel- Poisson's formula for validating satellite gravity gradiometry data Advances in Space Research 47 2 757-767.

  • Eshagh M. (2011b) The effect of spatial truncation error on integral inversion of satellite gravity gradiometry data Advances in Space Research 47 1238-1247.

  • Eshagh M. and Abdollahzadeh M. (2010) Semi-vectorization: an efficient technique for synthesis and analysis of gravity gradiometry data Earth Science Informatics 3149-158.

  • Eshagh M. and Abdollahzadeh M. (2011) Software for generating gravity gradients using a geopotential model based on irregular semi-vectorization algorithm Computers & Geosciences 32 152-160.

  • Eshagh M. and Najafi-Alamdari M. (2006) Comparison of different numerical integration methods of orbit integration Journal of the Earth & Space Physics 33 1 41-57. (in Persian)

  • Eshagh M. and Najafi-Alamdari M. (2007) Perturbations in orbital elements of a low Earth orbiting satellite Journal of the Earth & Space Physics 33 1 1-12.

  • Eshagh M. and Romeshkani M. (2011). Generation of vertical-horizontal and horizontalhorizontal gravity gradients using stochastically modified integral estimators Advances in Space Research 48 1341−1358.

  • Eshagh M. and Romeshkani M. (2013). Quality assessment for terrestrial gravity anomalies by variance component estimation using GOCE gradiometric data and Earth’s gravity models. Studia Geophysica et Geodaetica 57 67−83.

  • Eshagh M. Abdollahzadeh M. and Alamdari-Najafi M. (2009) Simplification of geopotential perturbing force acting on a satellite Artificial Satellites 43 2 45-64.

  • Haagmans R. Prijatna K. and Omang O. (2002) An alternative concept for validation of GOCE gradiometry results based on regional gravity In Proc. Gravity and Geoid 2002 GG2002 August 26-30 Thessaloniki Greece.

  • Heiskanen W. and Moritz H. (1967) Physical Geodesy. W.H Freeman and company San Francisco and London.

  • Hirt C. Featherstone W.E. and Claessens S. J. (2011) On the accurate numerical evaluation of gedetic convolution integrals Journal of Geodesy 85 519-538.

  • Hwang C. and Lin J.M. (1998) Fast integration of low orbiter’s trajectory perturbed by the earth’s non-sphericity Journal of Geodesy 72 578-585.

  • IERS Conventions (2010). Gérard Petit and Brian Luzum (eds.). (IERS Technical Note ; 36) Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie 2010. 179 pp. ISBN 3-89888-989-6.

  • Kaula W. (1966) Theory of satellite geodesy Blaisdell Waltheim Keller W. and Sharifi M. A. (2005) Satellite gradiometry using a satellite pair Journal of Geodesy 78 544-557.

  • Kern M. and Haagmans R. (2004) Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric GOCE data In Proc. Gravity Geoid and Space missions GGSM 2004 IAG International symposium Portugal August 30- September 3 pp. 95-100.

  • Kern M. Preimesberger T. Allesch M. Pail. R. Bouman J. and Koop R. (2005) Outlier detection algorithms and their performance in GOCE gravity field processing Journal of Geodesy 78 509-519.

  • Martinec Z. (1998) Boundary-Value Problems for Gravimetric Determination of a Precise Geoid Springer Verlag 240 p.

  • Martinec Z. (2003) Green’s function solution to spherical gradiometric boundary-value problems Journal of Geodesy 77 41-49.

  • Moritz H. (1980) Geodetic Reference System 1980 Bulletin Géodésique 54:3.

  • Moritz H. (2000) Geodetic Reference System 1980 Journal of Geodesy 74 1 128-162.

  • Mueller J. Denker H. Jarecki F. and Wolf K.I. (2004) Computation of calibration gradients and methods for in-orbit validation of gradiometric GOCE data In Proc. Second international GOCE user workshop “Goce The Geoid and Oceanography” ESA-ESRIN Frascati Italy 8-10 March 2004.

  • Novak P. Vanicek P. Veronneau M. Holmes SA. Featherstone WE. (2001) On the accuracy of modified Stokes’s integration in high-frequency gravimetric geoid determination Journal of Geodesy 74 9 644-654.

  • Parrot D. (1989) Short arc orbit improvement for GPS satellites MSc thesis Department of Surveying Engineering University of New Brunswick Canada.

  • Pail R. (2003) Local gravity field continuation for the purpose of in-orbit calibration of GOCE SGG observations Advances in Geosciences 1 11-18

  • Pavlis N. Holmes SA. Kenyon SC. and Factor JK. (2008) An Earth Gravitational model to degree 2160: EGM08. Presented at the 2008 General Assembly of the European Geosciences Union Vienna Austria April 13-18 2008.

  • Petrovskaya P. and Vershkov A.N. (2006) Non-singular expressions for the gravity gradients in the local north-oriented and orbital frames. Journal of Geodesy 80 117-127.

  • Reed GB. (1973) Application of kinematical geodesy for determining the short wave length components of the gravity field by satellite gradiometer The Ohio State University Dept. of Geod. Sciences Rep. No. 201 Columbus Ohio.

  • Reigber C. Schwintzer P. and Lühr H. (1999) The CHAMP geopotential mission Boll. Geof. Teor. Appl. 40 285-289.

  • Reigber Ch. Jochmann H. Wünsch J. Petrovic S. Schwintzer P. Barthelmes F. Neumayer K.-H. König R. Förste Ch. Balmino G. Biancale R. Lemoine J.-M. Loyer S. and Perosanz F. (2004) Earth Gravity Field and Seasonal Variability from CHAMP. In: Reigber Ch. Lühr H. Schwintzer P. Wickert J. (eds.) Earth Observation with CHAMP - Results from Three Years in Orbit Springer Berlin 25-30.

  • Rim H. J. and Schutz B. E. (2001) Precision orbit determination (POD) Geoscience laser and altimeter satellite system University of Texas United States of America.

  • Romeshkani M. (2011). Validation of GOCE Gravity Gradiometry Data Using Terrestrial Gravity Data. M.Sc. Thesis K.N.Toosi University of Technology Tehran Iran.

  • Rummel R. Sanso F. Gelderen M. Koop R. Schrama E. Brovelli M. Migiliaccio F. and Sacerdote F. (1993) Spherical harmonic analysis of satellite gradiometry. Publications in Geodesy New Series No. 39 Netherlands Geodetic Commission Delft

  • Santos M. C. (1994) On real time orbit improvement for GPS satellites Ph.D thesis Department of Geodesy and Geomatics Engineering University of New Brunswick Canada.

  • Schwartz K-P. Sideris M.G. and Forsberg R. (1990) The use of FFT techniques in Physical Geodesy Geophysical Journal International 100 3 485-514.

  • Sharifi M.A. (2006) Satellite to satellite tracking in the space-wise approach PhD dissertation Geodätisches Institut der Universität Stuttgart.

  • Sneeuw N. (1992) Representation coefficients and their use in satellite geodesy Manuscripta Geodaetica 17 117-123.

  • Somodi B. and Földvary L. (2011) Application of numerical integration techniques for orbit determination of state-of-the-art LEO satellites Per. Pol. Civil Eng. 55 2 99-106 2011.

  • Su H. (2000) Orbit determination of IGSO GEO and MEO satellites Ph.D thesis Department of Geodesy University of Bundeswehr Munchen Germany

  • Tapley B. Ries J. Bettadpur S. Chambers D. Cheng M. Condi F. Gunter B. Kang Z. Nagel P. Pastor R. Pekker T. Poole S. and Wang F. (2005) GGM02-An improved Earth gravity field model from GRACE. Journal of Geodesy 79 467-478.

  • Toth G. Földvary L. Tziavos I. and Adam J. (2004) Upward/downward continuation of gravity gradients for precise geoid determination Proc. Second International GOCE user workshop “GOCE The Geoid and Oceanography” ESA-ESRIN Frascati Italy 8-10 March 2004.

  • Toth G. and Földvary L. (2005) Effect of geopotential model errors in the projection of GOCE gradiometer observables In: Gavity Geoid and Space missions IAG symposia 129. (Eds.Jekeli C. Bastos J. and Fernandes L.) Spriner verlag Berlin Heidelberg p. 72-76.

  • Tscherning C. C. Veicherts M. and Arabelos D. (2006) Calibration of GOCE gravity gradient data using smooth ground gravity In Proc. GOCINA workshop Cahiers de center European de Geodynamique et de seismilogie 25 63-67 Luxenburg.

  • Vermeer M. (1990) Observable quantities in satellite gradiometry Bulletin Geodaesique 64 347-361

  • Visser P. (1992) The use of satellites in gravity field determination and adjustment PhD dissertation University of Delft Visser P. (2009) GOCE gradiometer: estimation of biases and scale factors of all six individual accelerometers by precise orbit determination Journal of Geodesy 83 1 69-85.

  • Wolf R. (2000) Satellite orbit and ephemeris determination using inter satellite links Ph.D thesis Department of Geodesy University of Bundeswehr Munchen Germany.

  • Wolf K. I. (2007) Kombination globaler potentialmodelle mit terresrischen schweredaten fur die berechnung der zweiten ableitungen des gravitationspotentials in satellitenbahnhohe PhD thesis University of Hannover Germany.

  • Zielinski J.B. and Petrovskaya M.S. (2003) The possibility of the calibration/validation of the GOCE data with the balloon-borne gradiometer Advances in Geosciences 1 149-153.

Search
Journal information
Impact Factor


CiteScore 2018: 0.61

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.728

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 256 178 3
PDF Downloads 113 84 1