GNSS positioning algorithms using methods of reference point indicators

Open access

ABSTRACT

The GNSS standard positioning solution determines the coordinates of the GNSS receiver and the receiver clock offset from measurements of at least four pseudoranges. For GNSS positioning, a direct solution was derived for five and ten observed satellites without linearisation of the observation equations and application of the least squares method. The article presents the basic principles of methods for solving the positioning problem, the formulas and their derivation. The numerical examples with simulated pseudorange data confirm the correct performance of the proposed algorithm. The presented algorithms should be further tested with real measurements in other domains of positioning and navigation as well.

References

  • B. Hofmann-Wellenhof, H. Lichtenegger, E. Wasle, “Point positioning with code ranges” in GNSS Global Navigation Satellite Systems, Ed. SpringerWienNewYork, 2008, Austria, pp. 161-163.

  • J. Klobuchar, “Design and characteristics of the GPS ionospheric time - delay algorithm for single frequency” in Position Location and Navigation Symposium., Las Vegas, Nevada, 1986, November 4-7, pp. 280-286.

  • H.S. Hopfield, "Two-quartic tropospheric refractivity profile for correcting satellite data" in Journal of Geophysical Research, 1969, Vol. 74, No. 18, pp. 4487-4499.

  • G. Strang, K. Borre, "Receiver position from code observations" in Linear Algebra, Geodesy and GPS,1997, Ed. Wellesley-Cambridge, MA, pp. 460-472.

  • J.B. Tsui, "Basic equations for finding user position" in Fundamentals of Global positioning system receivers. A software approach. Ed. John Wiley & Sons, 2000, pp. 10-11

  • M. Paonni, M. Anghileri, J.A. Avila-Rodriguez S. Wallner, B. Eissfeller “Performance assesment of GNSS signals in terms of time to first fix for cold, warm and hot start” in Proc. of the ION ITM 2010, San Diego, CA, January 25-27.

  • S. Bancroft, "An algebraic solution of the GPS equations" in IEEE Transactions on Aerospace and Electronic Systems, 1991, Vol. 30, No. 4, pp. 1021-1030.

  • J.S. Abel, J.W. Chaffee "Existence and uniqueness of GPS solutions" in IEEE Transactions on Aerospace and Electronic Systems, 1991, Vol. 27, No. 6, pp. 952-956.

  • J.W. Chaffee, J.S. Abel "On the exact solutions of pseudorange equations" in IEEE Transactions on Aerospace and Electronic Systems, 1991, Vol. 30, No. 4, pp. 1021-1030.

  • E.W. Grafarend, J.A. Chan "A closed-form solution of the nonlinear pseudo-ranging equations" in Artificial Satellites Planetary Geodesy, 1996, No. 28, pp. 133-147.

  • A. Kleusberg, "Die direkte Losung des raumlichen hyperbelschnitts" in Zeitschrift fur vermessungswesen, 1994, Vol. 119, No. 4, pp. 188-192.

  • S. Hausbrandt "Auxiliary algorithm" in "Rachunek wyrownawczy i obliczenia geodezyjne", Ed. PWN, 1970, Warsaw, Poland, pp. 530-540.

  • P. Misra, P. Enge, "Code phase measurements" in Global Positioning System. Signals, measurements, and performance", Ed. Ganga-Jamuna Press, 2006, Massachusetts, pp. 148-155.

  • B. Oszczak "New algorithm for GNSS positioning using system of linear equations", in Proc. of the ION GNSS+ 2013, Nashville, Tennessee, September 17-20.

  • B. Oszczak "Algorytm wyznaczania wspolrzednych punktu i dodatkowej niewiadomej z zastosowaniem ukladow rownan liniowych (Algorithm for determination of the coordinates and additional unknown using linear equations)", Scientific Bulletin, Ed. Air Force Academy, 2012, No. 2, Deblin, pp. 163-167.

  • B.W.Parkinson, J.J. Spilker Jr., "GPS error analysis" in Global Positioning System. Theory and Applications. 1996, Ed. American Institute of Navigation and Astronautics, Washington, Vol 1, pp. 469-483.

  • B. Oszczak, E. Sitnik “The Algorithm for Determining the Coordinates of a Point in Three- Dimensional Space by Using the Auxiliary Point". Artificial Satellites. Volume 48, Issue 4, Pages 141-145, ISSN (Online) 2083-6104, ISSN (Print)

Artificial Satellites

The Journal of Space Research Centre of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.33

SCImago Journal Rank (SJR) 2016: 0.179
Source Normalized Impact per Paper (SNIP) 2016: 0.560

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 15
PDF Downloads 2 2 2