A Comparison Between Numerical Differentiation and Kalman Filtering for a Leo Satellite Velocity Determination

Open access

Abstract

The kinematic orbit is a time series of position vectors generally obtained from GPS observations. Velocity vector is required for satellite gravimetry application. It cannot directly be observed and should be numerically determined from position vectors. Numerical differentiation is usually employed for a satellite’s velocity, and acceleration determination. However, noise amplification is the single obstacle to the numerical differentiation. As an alternative, velocity vector is considered as a part of the state vector and is determined using the Kalman filter method. In this study, velocity vector is computed using the numerical differentiation (e.g., 9-point Newton interpolation scheme) and Kalman filtering for the GRACE twin satellites. The numerical results show that Kalman filtering yields more accurate results than numerical differentiation when they are compared with the intersatellite range-rate measurements.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] L. Richard J. Burden F. Douglas Numerical Analysis (7th Ed) Brooks Cole 2000.

  • [2] T. Reubelt G. Asusten E.W. Grafarend Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite. Case study: CHAMP. J Geod 77 (2003) (5-6):257-278. DOI : 10.1007/s00190-003-0322-9

  • [3] L. Foldvary D. Svehla Ch. Gerlach M. Wermuth Th Gruber R. Rummel M. Rothacher B. Frommknecht Th. Peters P. Steigenberger Gravity model TUM-2sp based on the energy balance approach and kinematic CHAMP orbits Earth Observation with CHAMP - Results from Three Years in Orbit (Ed. Reigber Ch Lühr H Schwintzer P et al.) Springer Berlin 13-18 2004.

  • [5] P.S. Maybeck Stochastic Models Estimation and Control. Volume 1 Academic Press Inc 1979.

  • [4] M. Hanke O. Scherzer Inverse problems light: numerical differentiation. Amer. Math. Monthly 108 (2001) 512-5211.

  • [6] A. Gelb Applied Optimal Estimation. MIT Press Cambridge MA 1974.

  • [7] R.G. Brown P.Y.C Hwang Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercises and Solutions 3rd ed. Wiley New York 1997.

  • [8] L. Foldavary Analysis of Numerical Differentiation methods Applied for Determination of Kinematic Velocities for LEOs Per. Pol. Civil Eng. 51/1 17-24 2007.

  • [9] W.H. Press B.P. Flannery S.A. Teukolsky W.T. Vetterling Numerical Recipes in FORTRAN. The Art of Scientific Computing 2nd ed Cambridge University Press Cambridge 1992.

  • [10] R.E. Kalman A new approach to linear filtering and prediction problems. Transactions of the ASME Ser. D Journal of Basic Engineering 82 (1960) 34-45.

  • [11] D.A. Vallado Fundamentals of Astrodynamics and Applications. Third Edition. Published Jointly By Microcosm and Springer New York 2007.

  • [12] B.D. Tapley B.E. Schutz G.H. Born Statistical Orbit Determination. Elsevier Academic Press New York 2004

  • [13] F.G. Lemoine et al. The development of the joint NASA GSFC and the National Imagery Mapping Agency (NIMA) geopotential model EGM96. NASA Technical Report NASA/TP-1998-206861 Goddard Space Flight Center Greenbelt Maryland 1998.

  • [14] M. Chapront-Touze J. Chapront The lunar ephemeris ELP 2000 Astronomy and Astrophysics 190 (1988) 342-352.

  • [15] O. Montenbruck Practical Ephemeris Calculations Springer Verlag Heidelberg 1989.

  • [16] J.M. Picone A.E. Hedin D.P. Drob A.C. Aikin NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 107 (2002). doi:10.1029/2002JA009430 2002.

  • [17] O. Montenbruck E. Gill Satellite orbits-models methods and applications. Springer Berlin 2000.

  • [18] D.D. McCarthy G. Petit IERS Conventions IERS Tech. Note vol. 32. Verlag des Bundesamts fur Kartogr. und Geod. Frankfurt am Main Germany 2004. Available at: http://www.iers.org/iers/publications/tn/tn32

  • [19] Z. Kang B. Tapley S. Bettadpur J. Ries P. Nagel R. Pastor Precise orbit determination for the GRACE mission using only GPS data J. Geod 80 (2006)322-331.

  • [20] K. Case G. Kruizinga S. Wu GRACE level 1B Data Product User Handbook Version 1.2 2004.

Search
Journal information
Impact Factor


CiteScore 2018: 0.61

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.728

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 438 254 6
PDF Downloads 161 103 4