Unmodelled Effects in the Horizontal Velocity Field Determination: ASG-EUPOS Case Study

Open access

Unmodelled Effects in the Horizontal Velocity Field Determination: ASG-EUPOS Case Study

Recent space and satellite technologies offer great opportunities to determine crustal movements in the single, global reference frame. The densification of the global network through local area networks leads to increase the resolution of modelled deformations both horizontal and vertical. However, the credibility of the obtained velocity field is limited by several factors associated with unmodelled (or mismodelled) effects at the stage of GNSS data adjustment. Some of them are periodic (the influence of local atmospheric or hydrological impacts), some temporary (natural or anthropogenic seismicity) or related to local influences (snow load or effects associated with the freezing of the ground). This paper presents the usefulness of ASG-EUPOS time series for determination of the regional velocity field. The system has been operating since mid-2008, so the velocities obtained through the processing of 3-year time series are supposed to be reliable. The paper also presents comparison of the velocity determinations to the geological NNR-NUVEL-1A and geodetic APKIM2005 models.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Altamimi Z. Collilieux X. Legrand J. Garayt B. Boucher C. (2007): "ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters". J. Geophys. Res. 2007 nr 112.

  • Becker M. Cristea E. Figurski M. Gerhatova L. Grenerczy G. Hefty J. Kenyeres A. Liwosz T. Stangl G. (2002): "Central European intraplate velocities from CEGRN campaigns". Reports on Geodesy No 1 (61) pp. 83-89 2002.

  • Bogusz J. Figurski M. Kroszczyński K. Szafranek K. (2011a): "Investigation of environmental influences to the precise GNNS solutions". Acta Geodynamica et Geomaterialia v. 8 No. 1 2011 pp. 5-15.

  • Bogusz J. Hefty J. (2011): "Determination of the not-modelled short periodic variations in the GPS permanent sites' positions". Acta Geodynamica et Geomaterialia vol. 8 No. 3 (163) 2011 pp. 283-290.

  • Bogusz J. Jarosiński M. Wnuk K. (2011b): "Regional 2.5D model of deformations in Central Europe from GNSS observations: general assumptions of project". Reports on Geodesy No 2 (91) pp. 59-66.

  • Bosy J. Graszka W. Leończyk M. (2007): "ASG-EUPOS - a multifunctional precise satellite positioning system in Poland". European Journal of Navigation Vol. 5 No. 4 pp. 30-34.

  • Brockmann E. (1997): "Combination of solutions for geodetic and geodynamic applications of the Global Positioning System". Geodätisch-geophysikalische Arbeiten in der Schweiz 55 Schweizerischen Geodätischen Kommission.

  • De Mets C. Gordon R. G. Argus D. F. Stein S. (1990): "Current plate motion". Geophysical Journal International 1990 no 101 pp. 425-478.

  • Dong D. Fang P. Bock Y. Cheng M. K. Miyazaki S. (2002): "Anatomy of apparent seasonal variations from GPS-derived site position time series". J. Geophys. Res. 107(B4):2075. DOI: 10.1029/2001JB000573.

  • Drewes H. (2009): "The Actual Plate Kinematic and Crustal Deformation Model APKIM2005 as basis for a non-rotation ITRF". Geodetic Reference Frames IAG Symposia 2009 no 134 pp. 95-99.

  • Figurski M. Bogusz J. Bosy J. Kontny B. Krankowski A. Wielgosz P. (2011): ""ASG+": project for improving Polish multifunctional precise satellite positioning system". Reports on Geodesy No 2 (91) 2011 pp. 51-58.

  • Figurski M. Szafranek K. Bogusz J. Kamiński P. (2010): "Investigation on stability of mountainous EUPOS sites' coordinates". Acta Geodynamica et Geomaterialia Vol. 7 No. 3 (159) 2010 pp. 263-274.

  • Grenerczy G. Kenyeres A. Fejes I. (2000): "Present crustal movements and strain distribution in Central Europe inferred from GPS measurements". J. Geophys. Res. 105(B9) pp. 21 835-21 847 2000.

  • Hefty J. (2005): "Kinematics of Central European GPS geodynamic reference network as the result of epoch campaigns during nine years". Reports on Geodesy No. 2 (73) pp. 23-32 2005.

  • Hefty J. (2007): "Geo-kinematics of central and south-east Europe resulting from combination of various regional GPS velocity fields". Acta Geodyn. Geomater. Vol. 4 No. 4 (148) pp. 173-189 2007.

  • Hefty J. Igondová M. Hrčka M. (2005): "Contribution of GPS permanent stations in central Europe to regional geo-kinematical investigations". Acta Geodynamica et Geomaterialia Vol.2 No.3 (139) pp. 75-862005.

  • Huber P. J. (1964): "Robust estimation of a location parameter". Ann. Math. Stat. 35 pp. 73-101.

  • Hubert M. and Rousseeuw P. J. (1997) Robust regression with both continuous and binary regressors Journal of Statistical Planning and Inference 57 153-163.

  • Kenyeres A. Bruyninx C. (2009): "Noise and periodic terms in the EPN time series". IAG Symposia Series "Geodetic Reference Frames" Vol. 134 pp. 143-149 doi:10.1007/978-3-642-00860-3_22.

  • Kontny B. (2003) Geodezyjne badania wspólczesnej kinematyki glównych struktur tektonicznych polskich Sudetów i bloku przedsudeckiego na podstawie pomiarów GPS Zeszyty naukowe Akademii Rolniczej we Wroclawiu Rozprawy CCII 83-90 (in Polish).

  • Penna N. T. Stewart M. P. (2003): "Aliased tidal signatures in continuous GPS height time series". Geophys. Res. Lett. 30(23):2184. DOI: 10.1029/2003GL018828.

  • Press et al. (1993) Numerical recipes in C: the art of scientific computing 1988-1992 Cambridge University Press.

  • Wessel P. Smith W. H. F. (1998): "New improved version of the Generic Mapping Tools". Released EOS Trans. AGU 79 579.

Search
Journal information
Impact Factor


CiteScore 2018: 0.61

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.728

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 212 157 5
PDF Downloads 83 71 3