Sensitivity of Lageos Orbits to Global Gravity Field Models

Open access

Sensitivity of Lageos Orbits to Global Gravity Field Models

Precise orbit determination is an essential task when analyzing SLR data. The quality of the satellite orbits strongly depends on the models used for dynamic orbit determination. The global gravity field model used is one of the crucial elements, which has a significant influence on the satellite orbit and its accuracy. We study the impact of different gravity field models on the determination of the LAGEOS-1 and -2 orbits for data of the year 2008. Eleven gravity field models are compared, namely JGM3 and EGM96 based mainly on SLR, terrestrial and altimetry data, AIUB-CHAMP03S based uniquely on GPS-measurements made by CHAMP, AIUB-GRACE03S, ITG-GRACE2010 based on GRACE data, and the combined gravity field models based on different measurement techniques, such as EGM2008, EIGEN-GL04C, EIGEN51C, GOCO02S, GO-CONS-2-DIR-R2, AIUB-SST. The gravity field models are validated using the RMS of the observation residuals of 7-day LAGEOS solutions. The study reveals that GRACE-based models have the smallest RMS values (i.e., about 7.15 mm), despite the fact that no SLR data were used to determine them. The coefficient C20 is not always well estimated in GRACE-only models. There is a significant improvement of the gravity field models based on CHAMP, GRACE and GOCE w.r.t. models of the pre-CHAMP era. The LAGEOS orbits are particularly sensitive to the long wavelength part of the gravity fields. Differences of the estimated orbits due to different gravity field models are noticeable up to degree and order of about 30. The RMS of residuals improves from about 40 mm for degree 8, to about 7 mm for the solutions up to degrees 14 and higher. The quality of the predicted orbits is studied, as well.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Appleby G. M. (1998) Long-Arc analyses of SLR Observations of the Etalon Geodetic Satellites. JoGeod Vol. 72 Issue 6 pp. 333-342

  • Beutler G. (2005) Methods of Celestial Mechanics Springer-Verlag Berlin Heidelberg

  • Bloßfeld M. (2011) Adjustment of EOP and gravity field parameter from SLR observations Proceedings of 17th ILRS Workshop Bundesamt für Kartographie und Geodäsie

  • Bruinsma S. L. Marty J. C. Balmino G. Biancale R. Foerste C. Abrikosov O. Neumayer H. (2010) GOCE Gravity Field Recovery by Means of the Direct Numerical Method presented at the ESA Living Planet Symposium 2010 Bergen June 27 - July 2 2010 Bergen Norway

  • Cheng M. K. and B. D. Tapley (1999) Seasonal variations in low degree zonal harmonics of the Earth's gravity field from satellite laser ranging observations J. Geophys Res. 104 2667-2681

  • Colombo O. L. (1989) The dynamics of Global Positioning System orbits and the determination of precise ephemerides J. Geophys. Res. 94(B7) 9167-9182 doi:10.1029/JB094iB07p09167

  • CSR (2011) Center for Space Research The University of Texas in Austin USA ftp://ftp.csr.utexas.edu/

  • Dach R. Hugentobler U. Fridez P. Meindl M. (2007) Bernese GPS Software Version 5.0. AIUB University of Bern Switzerland

  • Deleflie F. Lemoine J. Laurain O. Feraudy D. (2009) Temporal variations of the Earth's gravity field derived from SLR data over a long period of time. Proceedings of 16th International Workshop on Laser Ranging Poznań Poland October 13-17 2008

  • Drinkwater M. Haagmans R. Muzi D. et al. (2006) The GOCE gravity mission: ESA's first core explorer in: Proceedings of Third GOCE User Workshop Frascati Italy ESA SP-627 pp.1-7

  • Folkner W. Charlot P. Finger M. Williams J. Sovers O. Newhall X. Standish E. Jr. (1994) Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements Astronomy and Astrophysics (ISSN 0004-6361) vol. 287 no. 1 p. 279-289

  • Förste C. Schmidt R. Stubenvoll R. Flechtner F. Meyer U. König R. Neumayer H. Biancale R. Lemoine J.-M. Bruinsma S. Loyer S. Barthelmes F. and Esselborn S. (2008) satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C J. Geod. 82 6 331-346 doi:10.1007/s00190-007-0183-8

  • Goiginger H. Hoeck E. Rieser D. Mayer-Gürr T. Maier A. Krauss S. Pail R. Fecher T. Gruber T. Brockmann J. M. Krasbutter I. Schuh W.-D. Jäggi A. Prange L. Hausleitner W. Baur O. Kusche J. (2011) The combined satellite-only global gravity field model GOCO02S. Presented at the 2011 General Assembly of the European Geosciences Union Vienna Austria April 4-8 2011

  • Herring T. A. P. M. Mathews and B. A. Buffett (2002) Modeling of nutation-precession: Very long baseline interferometry results J. Geophys. Res. 107(B4) 2069 doi:10.1029/2001JB000165

  • ICGEM (2011) International Centre for Global Earth Models GFZ Helmholtz Centre Potsdam http://icgem.gfz-potsdam.de/ICGEM

  • ILRS International Laser Ranging Service (2011) Temporary terrestrial reference frame SLRF2005 http://ilrs.gsfc.nasa.gov/working_groups/awg/SLRF2005.html

  • Jäggi A. Beutler G. Mervart L. (2010) GRACE Gravity Field Determination Using the Celestial Mechanics Approach - First Results. In: Gravity Geoid and Earth Observation edited by S. P. Mertikas vol. 135 pp. 177-184 DOI 10.1007/978-3-642-10634-7_24 Springer ISBN 978-3-642-10633-0

  • Jäggi A. Bock H. Prange L. Meyer U. Beutler G. (2011a) GPS-only gravity field recovery with GOCE CHAMP and GRACE Adv. Space Res. vol.47 (6) pp. 1020-1028 DOI 10.1016/j.asr.2010.11.008

  • Jäggi A. Sośnica K. Thaller D. Beutler G. (2011b) Validation and estimation of low-degree gravity field coefficients using LAGEOS in: Proceedings of 17th ILRS Workshop Bundesamt für Kartographie und Geodäsie

  • Kolaczek B. Schuh H. Gambis D. (eds.) (2000) High frequency to subseasonal variations in Earth Rotation IERS Technical Note 28 Paris: Central Bureau of IERS - Observatoire de Paris 2000. vi 91 p.

  • Lejba P. Schillak S. (2011) Borowiec activity in satellite orbit determination in: Proceedings of 17th ILRS Workshop Bundesamt für Kartographie und Geodäsie

  • Lemoine F. G. Kenyon S. C. Factor J. K. Trimmer R. G. Pavlis N. K. Chinn D. S. Cox C. M. Klosko S. M. Luthcke S. B. Torrence M. H. Wang Y. M. Williamson R. G. Pavlis E. C. Rapp R. H. Olson T. R. (1998) The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96 NASA Technical Paper NASA/TP1998206861 Goddard Space Flight Center Greenbelt USA

  • Lucchesi D. M. (2005) The impact of the even zonal harmonics secular variations on the Lense-Thirring effect measurement with the two LAGEOS satellites. Int. J. Modern Phys. D 14 (12) 1989-2023.

  • Lyard F. Lefevre F. Letellier T. Francis O. (2006) Modelling the global ocean tides: modern insights from FES2004 Ocean Dynamics 56:394-415

  • Maier A. Krauss S. Hausleitner W. Baur O. (2011) SLR providing low-degree gravity field coefficients for new combined gravity field model GOCO02S Proceedings of 17th ILRS Workshop BKG

  • Mayer-Gürr T. Kurtenbach E. Eicker A. (2011) The Satellite-only Gravity Field Model ITG-Grace2010s http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010

  • McCarthy D. Petit G. (2004) IERS Conventions (IERS Technical Note 32) Verlag des Bundesamts für Kartographie und Geodäsie Frankfurt am Main 127 pp. paperback ISBN 3-89888-884-3

  • Mendes V. Pavlis E. C. (2004) High-Accuracy Zenith Delay Prediction at Optical Wavelengths Geophysical Res. Lett. 31 L14602 doi:10.1029/2004GL020308

  • Mitrovica J. X. and W. R. Peltier (1993) present day secular variation in the zonal harmonics of Earth's geopotential J. Geophys. Res. 98 4509-4526

  • Pavlis N. K. Holmes S. Kenyon S. Factor J. (2008) An Earth Gravitational Model to Degree 2160: EGM2008 presented at the 2008 General Assembly of the European Geosciences Union Vienna Austria April 13-18

  • Pearlman M. R. Degnan J. J. Bosworth J. M. (2002) The International Laser Ranging Service Adv Space Res. 30(2):125-143

  • Petit G. Luzum B. (eds.) (2011) IERS Conventions 2010. IERS Technical Note 36 Frankfurt am Main: Verlag des Bundesamt für Kartographie und Geodäsie 179

  • Prange L. (2011) Global Gravitiy Field Determination Using the GPS Measurements Made Onboard the Low Earth Orbiting Satellite CHAMP Geodätisch-geophysikalische Arbeiten in der Schweiz vol. 81 http://www.bernese.unibe.ch/publist/2011/phd/diss_lp.pdf http://www.bernese.unibe.ch/publist/2011/phd/diss_lp.pdf

  • Ray R. and Ponte R. (2003) Barometric tides from ECMWF operational analyses Annales Geophysicae vol. 21 pp. 1897-1910

  • Reigber C. Lühr H. Schwinzer P. (1998) Status of the CHAMP Mission in: Rummel R. Drewes H. Bosch W. Hornik H. (eds.) Towards an Integrated Global Geodetic Observing System (IGGOS) AIG Symp. 120 pp.63-65 ISBN 3540670793

  • Rubincam D. P. LAGEOS Orbit Decay Due to Infrared Radiation From Earth J. Geophys. Res. 92(B2) 1287-1294 1987

  • Sośnica K. Thaller D. Jäggi A. Dach R. Beutler G. (2011) Availability of SLR Normal Points at ILRS Data Centers Proceedings of 17th ILRS Workshop Bundesamt für Kartographie und Geodäsie

  • Tapley B. D. B. E. Schutz R. J. Eanes J. C. Ries M. M. Watkins (1993) Lageos Laser Ranging Contributions to Geodynamics Geodesy and Orbital Dynamics Contributions of Space Geodesy to Geodynamics: Earth Dynamics Geodyn. Series Vol. 24 D. E. Smith D. L. Turcotte 147-173 Washington D. C.

  • Tapley B. Watkins M. Ries J. Davis G. Eanes R. Poole S. Rim H. Schutz B. Shum C. Nerem R. Lerch F. Marshall J. A. Klosko S. M. Pavlis N. Williamson R. (1996) The Joint Gravity Model 3 J. Geophys. Res. Vol. 101 No. B12 28029-28049

  • Tapley B. Bettadpur S. Watkins M. et al. (2004) The gravity recovery and climate experiment: mission overview and early results Geophys. Res. Lett. 31 (9) L09607 1-4

  • Thaller D. Mareyen M. Dach R. Beutler G. Gurtner W. Richter B. Ihde J. (2009) Preparing the Bernese GPS Software for the analysis of SLR observations to geodetic satellites Proceedings of 16th International Workshop on Laser Ranging Poznań Poland October 13-17 2008 vol. 1 pp. 143-147

Search
Journal information
Impact Factor


CiteScore 2018: 0.61

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.728

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 392 238 14
PDF Downloads 151 108 10